Sisäpisteiden määrittäminen

Topologiaa

Olkoon X = R². Määritä joukko int A, kun A = { (x, y) ∈ R² : xy ≥ 0, x ≥ 0, | y | < 1 }.

Sain tällaisen ratkaisun:
int A = { (x, y) ∈ R² : x > 0, 0 < y < 1 }
Miten tämä kannattaisi perustella (ilman kuvaan nojautumista)?

Lisäksi olisin kiitollinen, jos joku jaksaisi ilmaista täsmällisesti joukon ∂A.

6

122

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Laskee,

      Totea ensin että A = { (x, y) ∈ R² : x ≥ 0, 1 < y ≥ 0 }
      ja perustele sitten miksi reunapisteet, joilla x=0 tai y=0 eivät ole sisäpisteitä.
      Perustele vielä, miksi jokainen muu joukon A piste on sisäpiste.

      • Laskee,

        Korjaan: piti olla
        Totea ensin että A = { (x, y) ∈ R² : x ≥ 0, 1 > y ≥ 0 }


      • Topologiaa
        Laskee, kirjoitti:

        Korjaan: piti olla
        Totea ensin että A = { (x, y) ∈ R² : x ≥ 0, 1 > y ≥ 0 }

        Mietinkin, että joukko A voitaisiin ilmaista helpommin.

        Sain tällaista aikaan:

        Olkoon p = (x, y) ∈ A, missä x ≠ 0 ja y ≠ 0.
        Valitaan r = min { x, 1 - y, y }.
        Tällöin B(p, r) ⊂ A.

        Olkoon p = (0, y) ∈ A.
        Tällöin mikä tahansa kuulaympäristö B(p, r) sisältää esim. pisteen (-½r, y) ∉ A.

        Olkoon p = (x, 0) ∈ A.
        Tällöin mikä tahansa kuulaympäristö B(p, r) sisältää esim. pisteen (x, -½r) ∉ A.

        Pitäisikö vielä todeta/lisätä jotain?


      • BananaBoy69

        "Totea ensin että A = { (x, y) ∈ R² : x ≥ 0, 1 > y ≥ 0 }"

        Minusta x-akselin alapuolelle jäävä jana { (x, y)∈R²: x = 0, -1 < y < 0 } kuuluu myös joukkoon A.

        ∂A = { (x, y)∈R²: x = 0, -1 ≤ y ≤ 1 } ∪ { (x, y)∈R²: x ≥ 0, y = 0 } ∪ { (x, y)∈R²: x ≥ 0, y ≥ 1 }


    • Jana { (x, y) ∈ ℝ² | x = 0 ∧ −1 < y < 0 } todellakin kuuluu joukkoon A. Tämä ei vaikuta lopputulokseen eli A:n sisäpisteiden joukkoon, mutta pätevään päättelyyn (oikeaan vastaukseen) tarvitaan – jos muuten sovelletaan ehdotettua logiikkaa – tämän janan mainitseminen ja sen osoittaminen, että sen pisteet eivät ole sisäpisteitä.

      WolframAlphakin toteaa, että joukon A ehto on ekvivalentti ehdon
      (x = 0 ∧ −1 < y < 1) ∨ (x > 0 ∧ 0 ≤ y < 1)
      kanssa (ehto kirjoitettu tässä loogisena lausekkeena, WolframAlpha ilmaisee asian ”ratkaisuina”, solutions).

      http://www.wolframalpha.com/input/?i= xy ≥ 0, x ≥ 0, | y | < 1

      • tietäjä

        "Jana { (x, y) ∈ ℝ² | x = 0 ∧ −1 < y < 0 }"

        Tuo ei ole jana. Jana on nimittäin aina suljettu joukko, mutta tämä ei ole.


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Purran tuhoja tuskin saadaan koskaan korjatuksikaan

      Purra on aiheuttanut Suomen taloudelle karmaisevat tuhot. Sen lisäksi Purra on ajanut myös suuren osan Suomen kansasta k
      Maailman menoa
      162
      8624
    2. Marinin tuhojen korjaaminen kestää kahdeksan vuotta

      Nyt on vasta neljännes mennyt ja ensimmäiset korjausliikkeet saatu liikkeelle. Innokkaimmat olivat odottaneet että jo t
      Maailman menoa
      87
      7455
    3. Miksi persuilla ei ole firmoja?

      Kuten vasemmisstolaisilla, esim. Sannalla MA\PI. Eikö ole aika erikoista?
      Maailman menoa
      106
      7357
    4. Se oli Orpo joka rynni Eagle S -alukselle

      Vastoin kaikkia kansainvälisen merenkäynnin sääntöjä. Kunpa olisi ollut purjehtija Harkimo Suomen johdossa silloin. ht
      Maailman menoa
      3
      7326
    5. Persut hommasivat Suomeen 35 000 pientä lasta v. 2015

      Onko Riikka Purra nyt tavoittelemassa tätä samaa historiallista persujen utopiaa? Purram kaksinaamaisessa pelissä vaadit
      Maailman menoa
      41
      7244
    6. Aamun Riikka: työttömyydessä lähestytään viime laman synkintä vaihetta

      Nopeasti mentiiin upean Marinin hallituksen ennätystyöllisyydestä toiseen ääripäähän, kohti Suomen historian kurjimpia t
      Maailman menoa
      21
      7188
    7. Miksette persut irtisanoudu Kirkin lausunnoista?

      Kirkhän muun muassa vaati raiskattuja naisia pidättäytymään abortista ja vaimoja alistumaan aviomiestensä tahtoon. Mik
      Maailman menoa
      112
      6642
    8. Purran vuoro kiihoittua Lepomäen sääristä

      "Ulkoministeri Elina sanoo, ettei muuta pukeutumistaan sen mukaan, kenet tapaa, ja että hän ei suostuisi peittämään kasv
      Maailman menoa
      29
      6486
    9. Demarikultin uhri kertoo

      Demarikultin uhri kertoo: “En saanut mennä edes suihkuun ilman lupaa” – Seksuaalisen hyväksikäytön uhri kertoo vuosistaa
      Maailman menoa
      84
      5710
    10. Persujen kaksoisstandardit: Räsäsen uhkailu paha, Virran uhkailu hyvä

      Tässä taas nähdään kuinka kaksinaamaista porukkaa persut ovat. Mitäs persut tähän?
      Maailman menoa
      48
      5495
    Aihe