suojakaiteen säde

hiuskatoinen

terve!
Pikkuinen geometrinen pähkinä purtavaksi:
(Pelkkä vastaus ei riitä, tietokone laskee saman murto-osasekunnissa)

Sinulla on narua 1m. Maassa on taipuisa muoviputki, jonka vapaa pituus on 4m.

Taivutat putken ympyrän kaaren muotoiseksi ja sidot naurulla putken päät kiinni, niin että niiden etäisyydeksi jää 1m (putken venymää / solmuihin tarvittavaa osuutta ei huomioida)

Tuloksena on siis D-kirjainta muistuttava "puolikuu", jonka säde R=?

8

655

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Svedupelle

      jos 4 metrin mittaisen taipuisan muoviputken päät sidotaan yhteen 1 metrin mittaisella narulla, saatu kötöstys ei ole lähelläkään puolikuun muotoinen.

      • aloittaja

        otetaan siis uusiksi:

        sinulla on naru, jonka pituus L=a
        sinulla on muoviputki, jonka pituus on b

        taivutat putken ympyrän kaarelle ja päiden väliin pingotat narun. Tiedetään että putken kaaren muodostama kulma Pi< theta < 2Pi.
        R(a,b)=?
        theta(a,b)=?


      • antti
        aloittaja kirjoitti:

        otetaan siis uusiksi:

        sinulla on naru, jonka pituus L=a
        sinulla on muoviputki, jonka pituus on b

        taivutat putken ympyrän kaarelle ja päiden väliin pingotat narun. Tiedetään että putken kaaren muodostama kulma Pi< theta < 2Pi.
        R(a,b)=?
        theta(a,b)=?

        Tilanteesta saadaan kaksi yhtälöä. Olen merkinnyt thetaa t:llä.

        yhtälö A: kosinilauseesta:
        a^2 = 2R^2 - 2R^2*cos(t)
        = 2R^2 * (1-cos(t))
        yhtälö B: (2Pi-t)R = b
        R=b/(2Pi-t)

        yhdistetään A ja B:
        a^2 = 2b^2/(2Pi-t)^2*(1-cos(t))

        pienillä t hyvä arvio on cos(t)=1-t^2/2
        =>
        a^2 = 2b^2/(2Pi-t)^2*(1-(1-t^2/2))

        (a^2-b^2)t^2-4a^2Pi*t 4a^2*Pi^2 = 0

        tämän toisen asteen yhtälön ratkaisuksi tulee:
        t=2Pi*a/(a b)

        => R=b/(2Pi-t)=b/(2Pi(1-a/(a b)))


        tämä siis vain pienillä t:n arvoilla. vaikkapa t


      • aloittaja
        antti kirjoitti:

        Tilanteesta saadaan kaksi yhtälöä. Olen merkinnyt thetaa t:llä.

        yhtälö A: kosinilauseesta:
        a^2 = 2R^2 - 2R^2*cos(t)
        = 2R^2 * (1-cos(t))
        yhtälö B: (2Pi-t)R = b
        R=b/(2Pi-t)

        yhdistetään A ja B:
        a^2 = 2b^2/(2Pi-t)^2*(1-cos(t))

        pienillä t hyvä arvio on cos(t)=1-t^2/2
        =>
        a^2 = 2b^2/(2Pi-t)^2*(1-(1-t^2/2))

        (a^2-b^2)t^2-4a^2Pi*t 4a^2*Pi^2 = 0

        tämän toisen asteen yhtälön ratkaisuksi tulee:
        t=2Pi*a/(a b)

        => R=b/(2Pi-t)=b/(2Pi(1-a/(a b)))


        tämä siis vain pienillä t:n arvoilla. vaikkapa t

        kiitoksia, pitää vilkaista asiaa. Ymmärsinkö äkkikatsomalta oikein että vastauksesi ei ole eksakti, vaan likimääräinen?

        Tosielämässä t:n arvo on pitkästi yli Pi (ts. b>Pi*a), sillä kyseessä on tikapuiden ympärillä oleva "turvavanne", jonka haalarimies valmistaa tunnetun pituisesta peltisoirosta. Minua alkoi riipomaan tuo R=? ja äkkiä päädyin tilanteeseen, jossa yhtälön molemmin puolin keikkui sinifunktio. Hiustenlähtöä aiheutti se, että asiaan on selvästi tasan yksi ratkaisu, enkä saanut sitä selville.


      • antti
        aloittaja kirjoitti:

        kiitoksia, pitää vilkaista asiaa. Ymmärsinkö äkkikatsomalta oikein että vastauksesi ei ole eksakti, vaan likimääräinen?

        Tosielämässä t:n arvo on pitkästi yli Pi (ts. b>Pi*a), sillä kyseessä on tikapuiden ympärillä oleva "turvavanne", jonka haalarimies valmistaa tunnetun pituisesta peltisoirosta. Minua alkoi riipomaan tuo R=? ja äkkiä päädyin tilanteeseen, jossa yhtälön molemmin puolin keikkui sinifunktio. Hiustenlähtöä aiheutti se, että asiaan on selvästi tasan yksi ratkaisu, enkä saanut sitä selville.

        olin lukenut tehtävänannon huolimattomasti eli se mitä minä olen merkinnyt thetalla olisikin pitänyt olla 2Pi-theta, joten siksi tuo R=? saattaakin näyttää oudolta.


    • Miten niin tietokone laskee vastauksen murto-osa sekunnissa, jos ratkaisuyhtälöitä ei ole käytössä? Minulla ei ainakaan ole sellaista tietokonetta tai ohjelmaa, joka ratkaisisi pelkästään sanallisesti määritettyjä matemaattisia ongelmia.

      Mutta itse asiaan: Yhtälöiden johtaminen tuohon ongelmaan ei ole mitenkään vaikeaa. Ainoa vaikeus tulee yhtälöiden ratkaisussa, koska kysessä ovat transkendentaaliset yhtälöt, joilla ei ole analyyttistä ratkaisua, vaan ne täytyy ratkaista aina numeerisesti. Tosin tuokaan ei ole tässä tapauksessa kovin ongelmallista.

      En nyt ehdi paneutua asiaan tarkemmin, mutta tarvittaessa palaan asiaan myöhemmin ja voin kertoa, miten yhtälöt muodostetaan ja ratkaistaan, sillä se ei ole suurikaan ongelma.

      • aloittanut

        - Tarkoitin nimenomaan että en halua/tarvitse numeerista vastausta; CAD-ohjelmat ilmoittavat ko. tiedot 'heti' tolkuttoman desimaalimäärän tarkkuudella.

        Sain itsekin kyhättyä yhtälöt = -merkin molemmin puolin. Sitten aletaan kasvattamaan R:n arvoa (R,min=b/2), kunnes yhtälön puolikkaat ~yhtäsuuret tai paremminkin niiden suhde < vaadittu toleranssi?

        Mikäli ylläolevaan ratkaisutapaan on joku 'hienompi' menetelmä, otetaan vihjeitä mieluusti vastaan. Suurin pettymys tosin on jo kärsitty, kun toivo eksaktista (symbolisesta) ratkaisusta mureni numeeriseksi iteroinniksi.


      • aloittanut kirjoitti:

        - Tarkoitin nimenomaan että en halua/tarvitse numeerista vastausta; CAD-ohjelmat ilmoittavat ko. tiedot 'heti' tolkuttoman desimaalimäärän tarkkuudella.

        Sain itsekin kyhättyä yhtälöt = -merkin molemmin puolin. Sitten aletaan kasvattamaan R:n arvoa (R,min=b/2), kunnes yhtälön puolikkaat ~yhtäsuuret tai paremminkin niiden suhde < vaadittu toleranssi?

        Mikäli ylläolevaan ratkaisutapaan on joku 'hienompi' menetelmä, otetaan vihjeitä mieluusti vastaan. Suurin pettymys tosin on jo kärsitty, kun toivo eksaktista (symbolisesta) ratkaisusta mureni numeeriseksi iteroinniksi.

        Geometrioiden yhteydelle on helppo johtaa yhtälöpari

        (2*Pi-theta)*R=b
        2*R*sin(theta/2)=a.

        Näistä edelleen saadaan yhtälö esimerkiksi thetan ratkaisemiseksi

        -theta/b 2*Pi/b-2*sin(theta/2)/a=0.

        Edellinen yhtälö voidaan linearisoida eli korvataan sin(theta/2) likiarvollaan theta/2. Nyt thetan ja R:n likiarvot voidaan ratkaista suoraan saaduista lineaarisista yhtälöistä, ja ne ovat

        theta≈2*a*Pi/(a b)
        R≈(a b)/(2*Pi).

        Numeerisesti thetan arvo voidaan ratkaista esimerkiksi Newton-Raphson-iteraatiolla. Tämä onnistuu seuraavasti: Merkitään ensin f(theta) = -theta/b 2*Pi/b-2*sin(theta/2)/a. Nyt voidaan käyttää iteraatiota (hakasulut tarkoittavat alaindeksiä)

        theta[n 1]=theta[n]-f(theta[n])/f’(theta[n])),

        mihin voidaan ottaa alkuarvaus theta[0] yhtä suureksi kuin linearisoinnilla laskettu thetan likiarvo. Kokeilujeni mukaan jo kaksi iteraatiokierrosta näyttää tuottavan ainakin viisi oikeaa numeroa.


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Suomen kansa haluaa Antti Lindtmanista pääministerin

      Lindtman on miltei tuplasti suositumpi kuin etunimikaimansa Kaikkonen. Näin kertoo porvarimedian teettämä kysely. http
      Maailman menoa
      294
      4781
    2. Vain 21% kannattaa Lindtmania pääministeriksi

      se on selvästi vähemmän kuin puolueen kannatus, mites nyt noin?
      Maailman menoa
      135
      3066
    3. Miksei Björn Wahlroos jaa rahaa köyhille?

      Esimerkiksi Nordean tiloissa? Vai tuovatko ne köyhät hiekkaa marmorilattioille ja siksi ei pysty mursunviiksi pystyyn k
      Maailman menoa
      52
      2983
    4. Jouluksi miettimistä: kuka tai mikä valmistaa rahan?

      Nyt kun on ollut vääntöä rahasta ja eritoten sen vähyydestä, niin olisi syytä uida rahan alkulähteille, eli mistä se syn
      Maailman menoa
      28
      1541
    5. Julkinen sektori on elänyt aivan liian leveästi yli varojensa!

      Viimeisen 15 vuoden aikana julkisen puolen palkat ovat nousseet n. 40%, kun taas yksitysellä sektorilla vain n. 20%. En
      Maailman menoa
      227
      1242
    6. Missä kunnassa kaivattusi asuu

      Kuinka tarkkaa uskalla sanoa?
      Ikävä
      47
      1189
    7. Yksikään persu ei ole saanut Nobelin palkintoa

      Kertoo paljon persujen älyn puutteesta. Demareista mm. Ahtisaari on kyseisen palkinnon saanut.
      Maailman menoa
      7
      1016
    8. Miten antaa merkki hyvin eri ikäiselle miehelle, että kertoisi toiveensa ja ajatuksensa?

      Olen pitkään pitänyt miehestä, joka myös varmasti minusta. Hän ei tosin kerro ihastumisesta, eli voi hyvin olla, että tu
      Ikävä
      78
      991
    9. Emme koskaan keskustelleet kasvotusten syistä välirikollemme

      Enkä voisi kertoa perimmäistä rehellistä syytä. Kerroin sinulle pintapuolisen ”paketin” ja otin tavallaan omalle vastuu
      Ikävä
      58
      981
    10. Paskalaista valokuitulakiin

      Nyt maksajiksi joutuvat kaupunkilaiset eivätkä mökkiensä ulkohuusseissa kakistelevat mummot. Nimittäin EU määrää jokais
      Maailman menoa
      52
      979
    Aihe