En ymmärrä seuraavan raja-arvon laskemista:
lim (2 - x/2)^(1/x-2)
x->2
ainakin eksponentissa x ei voi olla 2. 0^0 on selvästi epämääräinen muoto. Onko Neperin luvun (1 1/x)^x avulla temppuilusta tässä apua. Toisaalta tuo on x-2 juuri luvusta 2 - x/2.
L'Hospitalia ei voi käyttää, enkä ole kokeillut olisiko siitä apua. Toisin sanoen saattaisiko se lausekkeen muotoon, joka ei olisi epämääräinen.
Toinen mitä mietin on lim x->0 (3^x - 2^x) / x
ääretön - ääretön on jälleen epämääräinen muoto. Vaikeita nämä temppuilut mielestäni.
Entä vielä tämä kolmas
lim x ->0 ln(x 1) - x / xsinx
Voiko tuota puristaa Sandwich periaatteen avulla
muotoon 1
limes
8
818
Vastaukset
- antti
Et tarvitse mitään hienoja periaatteita tai lauseita. Perussarjakehitelmät riittää ratkaisuun.
Ensimmäisessä käytetään Taylorin sarjaa:
(2-x/2)^(1/x-2)
=1 3(x-2)/4 jne
-> 1, kun x->2
Toisessakin lasketaan 3^x:n ja 2^x:n Taylorin sarjat:
3^x=1 x*ln(3) x^2*1/2(ln3)^2 jne
2^x=1 x*ln(2) x^2*1/2(ln2)^2 jne
eli
(3^x - 2^x)/x
=ln(3)-ln(2) P(x), ja tuo P(0)=0
eli tämän raja-arvo on ln(3)-ln(2)
Kolmannessa oletin, että tarkoitit lauseketta (ln(x 1)-x)/(x*sinx). Ilman sulkuja tuo olisi aika triviaali. Otetaan ln(x 1):n ja sinx:n sarjakehitelmät. En jaksa kirjoittaa, mutta periaate on, että otetaan ne sarjakehitelmät ja lavennetaan x^2:lla. Raja-arvoksi tulee -1/2.- antti
Tuo ensimmäisen kohdan vastaukseni on ihan puppua. Siis kyseessä piti ilmeisesti olla lauseke
((2-x)/2)^(1/(x-2)). Tuohan on sama kuin
(1/2)^(1/(x-2))*(2-x)^(1/(x-2))
Tuo lähestyy 0:aa, en kyllä oikein osaa perustella sitä. Riittääköhän perusteeksi, että eksponentiaalinen kasvu on voimakkaampaa kuin polynomiaalinen? Ei varmaan.
Varmaan tuossa ensiksi tarkoitat jotakin muuta kuin mitä kirjoitat, koska ongelmassa ei ole muutoin mitään vaikeutta. Onko lausekkeesi
lim ((2 - x)/2)^(1/(x-2))
x->2
vai kerrassaan jotakin muuta?Sitä olisi kannattanut pysyä luennolla hereillä tai sitten käyttää sitä l'Hospitalin sääntöä. Kun kirjoittaa ensimmäisen eksponenttimuodossa (siis e^ln[alkuperäinen lauseke])saadaan eksponenttiin lauseke, joka on muotoa 0/0. Koska eksponenttifunktio on jatkuva, pätee:
lim e^f(x)=e^lim f(x)
Eli l'Hospitalilla tutkit eksponentin lauseketta ja sijoitat sitten saamasi arvon. Tulos on e^-1/2.
Toinen kohta on suoraan muotoa 0/0, sillä eikös vain a^0 (a reaalinen ja erisuuri kuin nolla) ole 1 ja siis 1-1=0 ? Kunhan vain muistaa, miten a^x derivoidaan oikein... Täältä lopulta saadaan ln(3/2)
Viimeisessä ei myöskään ole mitään ihmeellistä, jos vain olen tulkinnut sen oikein.
Jos tehtävä todella oli lim ln(1 x)-x/[x*sinx]
x->0
niin ensimmäinen termi lähenee nollaa ja toinen termi - ääretöntä. Oliko tässä jokin ongelma?- Eugen
Jos ongelma on:
Lim((2-(x/2))^(1/(x-2))), kun x->2
Tällöin vastaus on e^-(1/2). Helppoa ja hauskaa...- Eugen
Lim((3^x-2^x)/x),x->0
Vastaus: ln(3/2)
Lim((ln(x 1)-x)/(xsinx)),x->0
vastaus: -1/2
Mikä näissä on vaikeata.???? - mathman
Eugen kirjoitti:
Lim((3^x-2^x)/x),x->0
Vastaus: ln(3/2)
Lim((ln(x 1)-x)/(xsinx)),x->0
vastaus: -1/2
Mikä näissä on vaikeata.????Mathematica, matlab, maple?
- gastrulli
mathman kirjoitti:
Mathematica, matlab, maple?
tai wolfram alpha
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Kanki kovana; ei tiedä pornovideoista mitään
Kaikkosen erityisavustajan asunnossa kuvattiin pornoa. Väittää ettei tiedä asiasta yhtään mitään. https://www.is.fi/po1216030- 292120
- 1771952
Mitä tämä on
Ajatella, olen viimeksi nähnyt sinua melkein vuosi sitten ohimennen. Ja silloinkin sinä välttelit minua. En ole kuullut101123Ei monet elä kuin alle 60 v, mikä vaikuttaa?
gulp, gulp.. Juice Leskinen eli 56 vuotta. Matti Nykänen eli 55 vuotta. Topi Sorsakoski eli 58 vuotta.661114Hyvää yötä kaivatulleni
En pysty tekemään kokemaan mitään sielussa tuntuvaa, syvää, vaikuttavaa, ilman että rinnastan sen sinuun. Niin kävi tänä24997- 73987
Nyt on konstit vähänä.
Nimittäin tuulivoiman vastustajilla, kun pitää perättömiä ilmiantoja tehdä. Alkaa olla koko vastustajien sakki leimattu,24902Tilinpäätösvaltuusto 27.5
Samalla viimeinen kokous ennen uudenvaltuustokauden alkamista. Vanhat antavat itselleen erinomaiset arvosanat, ja siirty42897Hevoset ajoteillä Karhulanvaaralla
Minkä ihmeen takia osaamattomat ihmiset tuovat hevosia ajoteille ja pyöräteille? Eilen oli kolari lähellä tämän takia. I12765