Suunnikkaan pinta-ala vektoreilla

Vektori_ongelma

Miten suunnikkaan pinta-ala saadaan vektoreilla laskettua kun ristituloa ei ole vielä opetettu ja wikipedian pistetulon kaavaan en noita osaa sijoittaa ja kertoilla ristiin rastiin?

Suunnikkaan Sivut, 2i 6j, 10i 3j

Voin tietenkin lasken noiden välisen kulman mutta miten noita vektoreita kerrotaan keskenään ?

12

1890

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Ehkänäin

      Saattaisi olla 2*3-6*10. tai sitten pistetulon kaavalla vissiin oiskohan tollanen toimiva? kyllä sellasen pitäis voida johtaa jotenkin.

      A=((ab)^2-(a .b)^2)^0.5

    • aeija

      Jos meinaa vektoreita käyttää, niin ihan pakko on opetella pistetulot ja vektoreiden pituuksien laskemiset, laitoin sen tuonne loppuun kun en heti käsittänyt mitä tarkoitettiin. Tuossa kuvassa on tehty myös suorakaiteesta osia siirtämällä, mutta sekin on vähän vaikea.
      Kuvaa katsellessa pitää käyttää näppäimistön alas- ja ylösnuolia, eikä koskea hiireen ollenkaa, koska minulla ainakin tulee siihen ponnari koko ajan:
      http://aijaa.com/WJMnbv

      • Vektori_ongelma

        Kiitos, itsellä meni tuohon cos kulmaan asti kaikki putkeen jonka jälkeen nuo sini muunnokset jäi tekemättä. kiitos!


    • Nameci2718

      Okei, sulla on kaksi vektoria, joten pistetulon avulla saat niiden välisen kulman kosinin.
      No, suunnikkaan pinta-ala voidaan laskee niiden välisen sinin avulla, joten toi täytyis nyt jotenkin muuttaa siniksi. Koska cos(x) = sin(90 - x) (asteina), saadaan kyseisten vektorien kulman välinen sini jos löydät sellasen vektorin, joka on jompikumpi noista käännettynä 90 astetta. No 10i 3j käännettynä 90 astetta vastapäivään on -3i 10j
      Nyt laskettaessa vektorien -3i 10j ja 2i 6j pistetulo saadaan kyseisen suunnikkaan pinta-ala eli 54. (Joskus voi tulla valinnoista riippuen negatiivinen pinta-ala, joka sitten muutetaan positiiviseksi.)

      • aeija

        Tämä on kyllä erittäin hyvä esitys, ja niinpä otankin omavaltaisen vapauden ja lainaan sitä, sekä piirrän siitä oikein kuvaakin, jotta selviää kuinka hyvä se oikein on:
        http://aijaa.com/SC8567


    • Ohman

      Suunnikkaasi pinta-ala:

      Olkoon det( A) determinantti

      2 6
      = 6 - 60 = - 54
      10 3

      Pinta-ala = l det(A)l = 54.

      Tämä käy yleisemminkin. Jos meillä on vektorit A(i) = (a(i,1) , a(i,2) a(i,3) 1<= i <= 3

      niin niiden virittämän särmiön tilavuus on l det(A)l missä A on matriisi jonka vaakarivit ovat nuo A(i) vektorien komponentit (vaakavektorit ovat A(i)-vektorit).

      Käy n-ulotteisessa tapauksessakin.

      Juu, ei ollut koululaisille sopivaa, tiedetään. Kunhan kirjoitin.

      Ohman

      • Ohman

        Ei onnistunut tuo determinantin kirjoittaminen. Sanon siis näin:

        Vektorisi ovat (2,6) ja (10,3). Olkoon A matriisi, jonka 1. vaarkarivi on (2,6) ja 2. vaakarivi on (10,3). Ihan sama muuten kummassa jäjestyksessä nämä vaakarivit ovat. Kysytty pinta-ala on l det(A) l = 54.

        Ohman


      • antapila
        Ohman kirjoitti:

        Ei onnistunut tuo determinantin kirjoittaminen. Sanon siis näin:

        Vektorisi ovat (2,6) ja (10,3). Olkoon A matriisi, jonka 1. vaarkarivi on (2,6) ja 2. vaakarivi on (10,3). Ihan sama muuten kummassa jäjestyksessä nämä vaakarivit ovat. Kysytty pinta-ala on l det(A) l = 54.

        Ohman

        Voisikohan tätä soveltaa myös muiden monikulmioiden pinta-alan laskentaan? Ajatuksena olisi käyttää suunnikkaan puolikkaita, eli kolmioita, jotka lasketaan sitten yhteen.

        Tarkoitus olisi siis laskea alueen pinta-ala ja alueen kulmien pisteet olisivat gps-koordinaatteja. Alue pitäisi vaan laskentaa varten "lohkoa" jotenkin ensin kolmioiksi.


      • Ohman
        antapila kirjoitti:

        Voisikohan tätä soveltaa myös muiden monikulmioiden pinta-alan laskentaan? Ajatuksena olisi käyttää suunnikkaan puolikkaita, eli kolmioita, jotka lasketaan sitten yhteen.

        Tarkoitus olisi siis laskea alueen pinta-ala ja alueen kulmien pisteet olisivat gps-koordinaatteja. Alue pitäisi vaan laskentaa varten "lohkoa" jotenkin ensin kolmioiksi.

        Eiköhän se onnistuisi. Valitaan jokin sisäpiste ja piirretään siitä kärkiin ("kulmien pisteisiin") vektorit. Pannaan vielä yksinkertaisuuden vuosi tuo sisäpiste origoon eli jos sen koordinaatit ovat x(0), y(0) ja kärkipisteet ovat x(i),y(i) niin vektorit ovat
        (x(i) - x0, y(i) - y0).

        .Kärkipisteiden vektoreiden avulla voi laskea nuo kolmioiden pinta-alat (= puolet vastaavan suunnikkaan pinta-alasta) ja sitten lasketaan ne yhteen, kuten sanoitkin.

        Mutta kun puhut gps-koordinaateista niin maapallon pinta on kaareva eikä kolmioiden aloja saada noin. Mutta jos tasoapproksimaatio riittää niin eiköhän se siitä.

        Ohman


      • Ohman

        Lisään vielä ennenkuin joku "mielensäpahoittaja" taas käy kimppuuni että tuo äsken esittämäni käy noin nätisti tietysti vain silloin kun tuo monikulmio on on sillä tavalla säännöllinen että kolmioihin jako onnistuu kuvaamallani tavalla. Jos monikulmio on monimutkaisempi täytyy kolmioihin jakokin tehdä tietenkin toisin. Mutta onhan se tehtävissä, jos ei yksinkertaisesti niin sitten monimutkaisesti.

        Ohman


      • antapila
        Ohman kirjoitti:

        Eiköhän se onnistuisi. Valitaan jokin sisäpiste ja piirretään siitä kärkiin ("kulmien pisteisiin") vektorit. Pannaan vielä yksinkertaisuuden vuosi tuo sisäpiste origoon eli jos sen koordinaatit ovat x(0), y(0) ja kärkipisteet ovat x(i),y(i) niin vektorit ovat
        (x(i) - x0, y(i) - y0).

        .Kärkipisteiden vektoreiden avulla voi laskea nuo kolmioiden pinta-alat (= puolet vastaavan suunnikkaan pinta-alasta) ja sitten lasketaan ne yhteen, kuten sanoitkin.

        Mutta kun puhut gps-koordinaateista niin maapallon pinta on kaareva eikä kolmioiden aloja saada noin. Mutta jos tasoapproksimaatio riittää niin eiköhän se siitä.

        Ohman

        Kiitos hyvästä vinkistä, tuon erillisen sisäpisteen käyttö helpottaa. Itse aloin ajattelemaan asiaa vähän monimutkaisemmin, eli pähkäilin sitä miten kolmiot saisi tehtyä olemassa olevista pisteistä. Mutta tuolla tavallahan kaikki pisteet saa käsiteltyä helposti ohjelmointia silmällä pitäen.

        Tarkoitus olisi siis harjoitella kännykän sovellusohjelmointia. Maapallon kaarevuutta en ainakaan alkuvaiheessa sotke mukaan. Jos sitä alkaisi miettimään, niin ilmeisesti pitäisi jotenkin määrittää ensin alueen ääripisteet, eli käytännössä varmaan ajatella sellaista suorakulmiota, jonka sisään alue mahtuu nippa nappa. Sitten "taivutella" suorakulmio kuperaksi ja laskea sopiva kerroin pinta-alojen erolle. Lopuksi käyttää kerrointa siihen varsinaiseen alueeseen.


      • Ohman
        antapila kirjoitti:

        Voisikohan tätä soveltaa myös muiden monikulmioiden pinta-alan laskentaan? Ajatuksena olisi käyttää suunnikkaan puolikkaita, eli kolmioita, jotka lasketaan sitten yhteen.

        Tarkoitus olisi siis laskea alueen pinta-ala ja alueen kulmien pisteet olisivat gps-koordinaatteja. Alue pitäisi vaan laskentaa varten "lohkoa" jotenkin ensin kolmioiksi.

        Tuli vielä mieleeni seuraavaa:

        Olkoon meillä x,y - tasossa konveksi monikulmio jonka kärkipisteet ovat (x(1),y(1),...,(x(n),y(n)) missä x,y ovat karteesiset koordinaatit eli metrinen perusmuoto on ds^2 = dx^2 dy^2.Tason pistejoukko on konveksi jos mitkä tahansa sen kaksi pistettä yhdistävä segmentti myös kokonaan kuuluu tuohon joukkoon. Jos tuo n-kulmio on konveksi niin sen pinta-ala on

        A = 1/2( (x(1) - x(2)) * (y(1) y(2)) (x(2) - x(3)) * (y(2) y(3)) ... (x(n) - x(1)) * (y(n) y(1))).

        Tulos on positiivinen jos kärkipisteet on lueteltu positiiviseen kiertosuuntaan (vastapäivään), muuten negatiivinen. Mutta ala on l A l.

        Ohman


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Suureksi onneksesi on myönnettävä

      Että olen nyt sitten mennyt rakastumaan sinuun. Ei tässä mitään, olen kärsivällinen ❤️
      Ikävä
      93
      2129
    2. Perusmuotoiset TV-lähetykset loppu

      Nyt sanoo useiden HD-muotoistenkin kanavien kohdalla äly-TV, ettei kanava ole käytössä, haluatko poistaa sen? Kanavia
      Apua aloittelijalle
      167
      1557
    3. YLE Äänekosken kaupunginjohtaja saa ankaraa arvostelua

      Kaupungin johtaja saa ankaraa kritiikkiä äkkiväärästä henkilöstöjohtamisestaan. Uusin häirintäilmoitus päivätty 15 kesä
      Äänekoski
      74
      1339
    4. Euroopan lämpöennätys, 48,8, astetta, on mitattu Italian Sisiliassa

      Joko hitaampikin ymmärtää. Se on aivan liikaa. Ilmastonmuutos on totta Euroopassakin.
      Maailman menoa
      240
      1237
    5. No ei sun asunto eikä mikään

      muukaan sussa ole erikoista. 🤣 köyhä 🤣
      Ikävä
      73
      1190
    6. Hyvin. Ikävää nainen,

      Että vainoat ja stalkkaat miestäni.onko tarkoituksesi ehkä saada meidät eroamaan?no,siinä et tule onnistumaan
      Ikävä
      88
      1106
    7. Martina lähdössä Ibizalle

      Eikä Eskokaan tiennyt matkasta. Nyt ollaan jännän äärellä.
      Kotimaiset julkkisjuorut
      151
      1051
    8. Asiakas iski kaupassa varastelua tehneen kanveesiin.

      https://www.iltalehti.fi/kotimaa/a/33a85463-e4d5-45ed-8014-db51fe8079ec Oikein. Näin sitä pitää. Kyllä kaupoissa valtava
      Maailman menoa
      253
      1016
    9. Katsoin mies itseäni rehellisesti peiliin

      Ja pakko on myöntää, että rupsahtanut olen 😆. Niin se ikä saavuttaa meidät kaikki.
      Ikävä
      51
      936
    10. Uskomaton tekninen vaaliliitto poimii rusinoita pullasta

      Korni näytösesitelmä menossa kaupunginvaltuustossa. Juhlia ei ole kokouksista tiedossa muilla, kuin monipuolue paikalli
      Pyhäjärvi
      88
      901
    Aihe