Miten voin selvittää onko paraabeli toisen paraabelin alapuolella?
Paraabelit
11
299
Vastaukset
- hiuka
kuvaaja?
paraabelin arvo (y-koordinaatti) pisteessä x? - Kanootti3
Vinkki: tutki niiden lausekkeiden erotusta.
- KaksiParaabelia
Pitää selvittää molempien minimiarvo. Ei kait kysymystä muulla tavalla voine ymmärtää. Kysehän lienee vain kahdesta pisteestä.
Väärin!
Otetaan paraabelit (1) y = x^2 ja (2) y = 1/2 x^2 2.Nämä leikkaavat pisteissä x = /- 2.
Paraarabelin (2) minimi on y = 2 ja se on siis suurempi kuin paraabelin (1) minimi joka on y = 0.
Kun -2 < x < 2 on paraabelien erotus 1/2 x^2 2 - x^2 = - 1/2 x^2 2 > 0 ja paraabeli (2) on paraabelin (1) yläpuolella.
Kun x > 2 tai x < -2 on paraabelien erotys < 0 ja (1) on (2):n yläpuolella.
- parastaennen
Paraabelin yhtälöt pitää muuttaa huippupistemuotoon, josta sitten päätellään.
- Noinkohan
Pitää ensin määritellä, mitä tarkoitetaan alapuolella olemisella. Tarkoittaako että jokaisella x arvolla ensimmäisen parabelin y-arvo on suurempi kuin toisen. Vai että ensimmäisen parabelin kaikki y-arvot ovat suurempia kuin mikään toisen parabelin y-arvo.
- Menisikö_näin
Kumpikin onnistuu menetelmällä, että ensin lasketaan paraabelien leikkauspisteet. Mikäli näitä löytyy, ei haluttu ehto täyty. Muussa tapauksessa lasketaan paraabelien ääriarvot. Ääriarvoja vertaamalla voidaan päätellä, täyttävätkö paraabelit kummassakaan mielessä ehdon.
Ei tässä alapuolella olemisessa ole mitään epäselvää. Jos meillä on kaksi funktiota f ja g ja kysytään onko g:n kuvaaja f:n kuvaajan alpuolella niin kyllä tämä tapahtuu sjvs kun f(x) > g(x) kaikilla arvoilla x.
Jos f(x) >= g(x) kaikilla arvoilla x niin f :n kuvaaja ei ole missään pisteessä x g:n kuvaajan alapuolellaa.
- laskee
Jos on kyse R^2:n eli tason käyristä, yltä löytyy hyviä vinkkejä. Kanootn vinkki on asian ydin. En oikein jaksa uskoa, että kyse olisi useampiulotteisesta avaruudesta termin "alapuolella" perusteella, vaikka alapuolisuus voidaan määritellä myös niissä.
- Kanootti3
Niin, tosiaan eihän sitä edes sanottu onko paraabelit tasossa.
- Orwell-1984
Kanootti3 kirjoitti:
Niin, tosiaan eihän sitä edes sanottu onko paraabelit tasossa.
Ehkä ne ovat n-pallon pinnalla.
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
- 496031
Maataloustuet pois
Jokainen maksakoon harrastuksensa itse. Eihän golfin peluutakaan maksa yhteiskunta.2635947Australia, Britannia ja Kanada tunnustivat Palestiinan
Aikooko Petteri Lapanen pysytellä persujen ja uskovaisten panttivankina ja jättää Suomen historian väärälle puolelle?915750Kohtalokas laukaus
IL 20.9.25 "Ihminen kuoli baarin edustalla Kajaanissa Poliisi ei epäile tapauksessa rikosta." "Kajaanin keskustassa on k374918Joko alkaa menemään tajuntaan tämä yliluonnollinen yhteys?
Varmaan pikkuhiljaa. Muista olla kiltisti ❤️494729Työeläkkeen saamiseksi olisi tehtävä töitä
Meillä on Suomessa iso joukko ihmisiä, joilla olisi vielä työkykyä jäljellä, mutta joilta puuttuu arjesta mielekäs tekem2174077Sählyhallitus 2023-2025, mailat heiluvat, mutta pallo karkaa kulmaan
Salibandy on organisoitua. Sähly on taas sitä, kun joku tuo mailat ja palloja on ehkä yksi. Sitä tämä hallituskin on: pe43751- 1503604
Muistattekos kun Sannan aikana suomalaisten varallisuuteen lisättiin viidennes
Köyhät voittivat eniten mutta rikkaimmat kuitenkin köyhtyi!343192Joulukinkku NYT
Sian kankuista tulee vielä pula. Nyt on oikea aika hankkia joulukinkku.253137