Yhtälöpari

Anonyymi

Miten lasketaan yhtölöparilla esim. Nauloja on yhteensä 500. Toisessa laatikossa on 30 naulaa vähemmän. Paljonko on kummassakin laatikossa (kaksi laatikkoa)?

20

202

Äänestä

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Muodostamalla yhtälöpari ja ratkaisemalla se. Muuttujiksi tietenkin laatikoiden naulamäärät. Millaiset yhtälöt saat annetuista tiedoista muodostettua?

      Mitä se tarkoittaisi, että yhteensä on 500 naulaa? Siis jos molemman laatikon sisältö kaadetaan samaan kasaan ja sitten lasketaan naulat yksi kerrallaan, niin saadaan luku 500. Vinkki: tämähän tarkoittaa summaamista.

      Entäpä sitten se, että toisessa on 30 vähemmän? Sehän tarkoittaa että siinä toisessa on sitten 30 enemmän. Jos alat ottamaan laatikoista nauloja kummastakin yksi kerrallaan (paritellen, siis naulat paritellen ei tarvitse samalla yhdyntää harjoittaa) pois eli otat yhtä monta kummastakin ja sitten kun toisessa on nolla, niin toisessa on vielä 30. Tällähän on jotain tekemistä erotuksen kanssa.

      Nämähän ovat molemmat ajatuskokeita, sillä jos ekassa jo sotket naulat yhteen et enää muista kuinka monta per laatikko oli, toki sen voi rekonstruoida tiedoista. Mutta jos sinulla ne laatikot oikeasti on, niin ratkaisuhan onnistuu ihan laskemallakin laatikoiden sisällöt.

    • Anonyymi

      Ota 30 naulaa pois kokonaismäärästä. Jäljellä jää 470. Tuosta on puolet eli 235 kummassakin laatikossa. Lisää 30 takaisin toiseen laatikkoon.

      Nyt kun tiedät vastauksen ja tarvittavat laskutoimitukset, voi muodosta helposti kaksi yhtälöä.

    • Anonyymi

      a b = 500
      a - b = 30

    • Anonyymi

      V=A-LAATIKKO 265 JA B LAATIKKO 235 JA KAIKKI TÄMÄ ILMAN YHMYNTÖJÄ.

    • Matriisilla voisi laskea näin
      [[1,1], [1,-1]] [x, y] = [500, 30],
      joten
      [x, y] = [[1,1], [1,-1]]^{-1} [500, 30] = [265, 235].

      • Anonyymi

        Matriisin käyttö tuntuu magialta :)
        Jostain syystä se toimii.


      • Anonyymi

        Ilmeisesti kuitenkin niin itsestään selvää ettei sen yleistä todistusta näe missään ;-(


      • Anonyymi kirjoitti:

        Ilmeisesti kuitenkin niin itsestään selvää ettei sen yleistä todistusta näe missään ;-(

        Ovat hyvä abstraktio. Muodostavat sitten renkaan itsessäänkin ja tietysti mielenkiintoisia ryhmiä.


      • Anonyymi
        Anonyymi kirjoitti:

        Ilmeisesti kuitenkin niin itsestään selvää ettei sen yleistä todistusta näe missään ;-(

        A olkoon matriisi jolla on käänteismatriisi A^( - 1).Sen määritelmä on seuraava:

        A*A^(- 1) =A^(- 1) * A = I missä I on ykkösmatriisi: jokaiselle matriisille C on I*C = C*I = C.

        Jos meillä on yhtälöryhmä

        A*X = B niin A^( - 1) * A * X =A^( - 1) * B eli I*X = A^( - 1) * B
        joten X =A^( - 1) * B.

        Ei ole magiaa. Mutta tietysti matriisilaskenta näin yksinkertaisessa tehtävässä on vähän ylimitoitettua. Lienee huumoria.


      • Anonyymi
        Anonyymi kirjoitti:

        A olkoon matriisi jolla on käänteismatriisi A^( - 1).Sen määritelmä on seuraava:

        A*A^(- 1) =A^(- 1) * A = I missä I on ykkösmatriisi: jokaiselle matriisille C on I*C = C*I = C.

        Jos meillä on yhtälöryhmä

        A*X = B niin A^( - 1) * A * X =A^( - 1) * B eli I*X = A^( - 1) * B
        joten X =A^( - 1) * B.

        Ei ole magiaa. Mutta tietysti matriisilaskenta näin yksinkertaisessa tehtävässä on vähän ylimitoitettua. Lienee huumoria.

        Jos ajatteleen vaikka kuuden muuttujan kuuden yhtälön ryhmää. Se että kaikki ne laskutoimitukset jotka suoritetaan tuottavat halutun tuloksen.


      • Anonyymi
        Anonyymi kirjoitti:

        Jos ajatteleen vaikka kuuden muuttujan kuuden yhtälön ryhmää. Se että kaikki ne laskutoimitukset jotka suoritetaan tuottavat halutun tuloksen.

        Saako sen jotenkin rekursiivisesti kun ensin osoittaa 2 x 2 tapauksen.


      • Anonyymi
        Anonyymi kirjoitti:

        Saako sen jotenkin rekursiivisesti kun ensin osoittaa 2 x 2 tapauksen.

        Ei tässä tarvita mitään rekursiota. A on n x n - matriisi jolloin yhtälöryhmässä on n-yhtälöä ja n-tumtematonta, n n = 2,3,4,...

        Kunhan käänteismatriisi on olemasssa eli A:n determinantti det(A) = / 0, niin ratkaisu toimii kuten näytin.

        Eräs mukava tapa ratkaista yhtälöryhmä on Cramerin sääntö, kts. esim. Wikipedia.


      • Anonyymi
        Anonyymi kirjoitti:

        Ei tässä tarvita mitään rekursiota. A on n x n - matriisi jolloin yhtälöryhmässä on n-yhtälöä ja n-tumtematonta, n n = 2,3,4,...

        Kunhan käänteismatriisi on olemasssa eli A:n determinantti det(A) = / 0, niin ratkaisu toimii kuten näytin.

        Eräs mukava tapa ratkaista yhtälöryhmä on Cramerin sääntö, kts. esim. Wikipedia.

        p.o. n = 2,3,4,...


      • Anonyymi
        Anonyymi kirjoitti:

        Ei tässä tarvita mitään rekursiota. A on n x n - matriisi jolloin yhtälöryhmässä on n-yhtälöä ja n-tumtematonta, n n = 2,3,4,...

        Kunhan käänteismatriisi on olemasssa eli A:n determinantti det(A) = / 0, niin ratkaisu toimii kuten näytin.

        Eräs mukava tapa ratkaista yhtälöryhmä on Cramerin sääntö, kts. esim. Wikipedia.

        Minun mielestäni tuo on vain valmiin merkintätavan käyttöä.
        Ei osoita tai todista mitään että se toimii tai miksi se toimii.


      • Anonyymi
        Anonyymi kirjoitti:

        Minun mielestäni tuo on vain valmiin merkintätavan käyttöä.
        Ei osoita tai todista mitään että se toimii tai miksi se toimii.

        Miksi sen pitäisi jotain todistaa ja mitä sen pitäisi todistaa?


      • Anonyymi
        Anonyymi kirjoitti:

        Minun mielestäni tuo on vain valmiin merkintätavan käyttöä.
        Ei osoita tai todista mitään että se toimii tai miksi se toimii.

        Olkoon sinulla yhden muuttujan yhtälö a x = b. Jos a =/ 0 niin sillä on käänteiselementti a^( - 1) = 1/a. Kerrot yhtälön molemmat puolet sillä. Saadaan
        1/a * a x = 1/a * b eli x = b/a.
        Tässä sinulla on 1 x 1 - matriisi a jas sen käänteismatriisi on 1/a. det(a) = a =/ 0.
        Ihan samoin käy yleisemmän n x n - matriisin kanssa kuten aiemmin jo yritin serlittää. Matriisialgebrassa A^( - 1) * A = I jne.

        a(1,1) x(1) a(1,2) x(2) ... a(1,n) x(n) = b(1)
        ....
        a(n,1) x(1) ... a(n,n) x(n) = b(n)

        on matriisimuodossa A *X = B missä A on kertoimien a(i,j) muodostama matriisi, X on tuntemattomien x(i) muodostama pystyvektori ja B on tunnettujen lukujen b(i) muodostama pystyvektori.
        Matriisialgebran sääntöjen mukaan täytyy olla X = A^( - 1) * B.


      • Anonyymi
        Anonyymi kirjoitti:

        Olkoon sinulla yhden muuttujan yhtälö a x = b. Jos a =/ 0 niin sillä on käänteiselementti a^( - 1) = 1/a. Kerrot yhtälön molemmat puolet sillä. Saadaan
        1/a * a x = 1/a * b eli x = b/a.
        Tässä sinulla on 1 x 1 - matriisi a jas sen käänteismatriisi on 1/a. det(a) = a =/ 0.
        Ihan samoin käy yleisemmän n x n - matriisin kanssa kuten aiemmin jo yritin serlittää. Matriisialgebrassa A^( - 1) * A = I jne.

        a(1,1) x(1) a(1,2) x(2) ... a(1,n) x(n) = b(1)
        ....
        a(n,1) x(1) ... a(n,n) x(n) = b(n)

        on matriisimuodossa A *X = B missä A on kertoimien a(i,j) muodostama matriisi, X on tuntemattomien x(i) muodostama pystyvektori ja B on tunnettujen lukujen b(i) muodostama pystyvektori.
        Matriisialgebran sääntöjen mukaan täytyy olla X = A^( - 1) * B.

        Kiitos selityksestä. Yritän varsinkin tuota "Ihan samoin käy yleisemmän n x n - matriisin kanssa " kohtaa saada itselleni selitettyä. Pitää ottaa kynä ja paperi avuksi pitämään ajatukset kasassa.

        Ehkä tämä on sitä että "kuinka selität lapselle" kategoriaa 😁


    • Tällaisen laskee päässä nopeasti siten, että ensin jakaa 500 kahdella ja saa 250. Sitten muokkaa tulosta 15 molempiin suuntiin eli 235 ja 265.

    • Anonyymi

      500 = X X – 30

      530 = 2X

      X = 530 / 2

      X = 265

      Eli toisessa laatikossa (laatikko X) on nauloja 265.

      Toisessa laatikossa (laatikko Y) on nauloja 30 vähemmän eli 235.

      Tarkistetaan: 265 235 = 500 ; ELI OIKEIN LASKETTU

      • Anonyymi

        Ikävä kyllä saat tällä kertaa vain 1 pisteen.

        Tehtävä piti ehdottomasti ratkaista yhtälöparilla. Niitähän tällä kurssilla harjoitellaan ensimmäistä kertaa. Aivan liian helppoa ilman sitä. On tietysti maailman helpoin yhtälöparitehtävänäkin:

        x y = 500
        x - y = 30


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Kanki kovana; ei tiedä pornovideoista mitään

      Kaikkosen erityis­avustajan asunnossa kuvattiin pornoa. Väittää ettei tiedä asiasta yhtään mitään. https://www.is.fi/po
      Maailman menoa
      122
      6079
    2. Halaisin sua mies

      Jos voisin 💗
      Ikävä
      29
      2140
    3. Onkohan meillä kummallakin joku pakkomielle toisiimme

      Vähän luulen että on..
      Ikävä
      177
      1972
    4. Mitä tämä on

      Ajatella, olen viimeksi nähnyt sinua melkein vuosi sitten ohimennen. Ja silloinkin sinä välttelit minua. En ole kuullut
      Tunteet
      10
      1153
    5. Ei monet elä kuin alle 60 v, mikä vaikuttaa?

      gulp, gulp.. Juice Leskinen eli 56 vuotta. Matti Nykänen eli 55 vuotta. Topi Sorsakoski eli 58 vuotta.
      Maailman menoa
      70
      1151
    6. Olen valmis

      Kohtaamaan sinut tänä kesänä, jos sellainen sattuma osuu kohdalleni.
      Ikävä
      73
      1007
    7. Hyvää yötä kaivatulleni

      En pysty tekemään kokemaan mitään sielussa tuntuvaa, syvää, vaikuttavaa, ilman että rinnastan sen sinuun. Niin kävi tänä
      Tunteet
      24
      1007
    8. Nyt on konstit vähänä.

      Nimittäin tuulivoiman vastustajilla, kun pitää perättömiä ilmiantoja tehdä. Alkaa olla koko vastustajien sakki leimattu,
      Kiuruvesi
      24
      922
    9. Tilinpäätösvaltuusto 27.5

      Samalla viimeinen kokous ennen uudenvaltuustokauden alkamista. Vanhat antavat itselleen erinomaiset arvosanat, ja siirty
      Pyhäjärvi
      42
      907
    10. Hevoset ajoteillä Karhulanvaaralla

      Minkä ihmeen takia osaamattomat ihmiset tuovat hevosia ajoteille ja pyöräteille? Eilen oli kolari lähellä tämän takia. I
      Suomussalmi
      12
      775
    Aihe