Pelaaja saa aluksi yhden nopan.
Joka kierros pelaaja heittää kaikki noppansa ja menettää ne joiden osoittamaa arvoa tuli useampi kuin yksi. Kierroksen päätteeksi pelaaja saa aina yhden uuden nopan.
Tavoite on saada seitsemän noppaa (tai yleisemmin d 1 noppaa, kun nopassa on d tahkoa). Toisin sanoen peli päättyy, kun pelaajalla on kuusi noppaa ja niillä tulee jokaisella eri arvo. Mikä on yhden pelin kierrosten määrän (N) odotusarvo?
Esimerkkipeli:
Pelaaja heittää [2] ja ei menetä mitään (niinkuin ei tietysti yhden nopan tilanteessa ikinä). Saa yhden lisänopan
Pelaaja heittää [5, 2], ei menetä mitään, saa lisänopan.
Pelaaja heittää [1, 1, 3]. Menettää kaksi noppaa, saa yhden.
Heittää [4, 4]. Menettää molemmat, saa yhden
Heitää [3],
....
jne.
...
Heittää [4, 3, 4, 3, 3, 6 ]. Menettää 5 noppaa, saa yhden
Heittää [3, 1],
...
jne.
...
Heittää [5, 3, 2, 5, 6, 1]. Menettää 2 noppaa, saa yhden
Heittää [1, 2, 3, 4, 5]. Ei menetä mitään, saa yhden.
Heittää [2, 5, 4, 1, 3, 6], voittaa pelin.
Eräs noppapeli
5
116
Vastaukset
Ratkaisu: https://membolicsythod.home.blog/2019/12/29/eras-noppapeli/
Ja uusi tehtävä:
Pelaaja saa aluksi yhden nopan. Jokaisella kierroksella pelaaja tekee seuraavaa: Hän heittää kaikki noppansa. Hän menettää ne, joilla tulee ykkönen ja jokaista muuta kohden hän saa yhden lisänopan seuraavalle kierrokselle. Hän jatkaa heittelyä niin pitkään kunnes on menettänyt kaikki sen kierroksen noppansa (saaden aina kustakin lisänopan kun ei menetä sitä). Seuraava kierros alkaa ja pelaaja ottaa heittelyyn viime kierroksella voittamansa lisänopat. Jos hän ei voittanut yhtään lisänoppaa, on peli ohi.
Merkitään pelaajalla kierroksen n alussa olevien noppien määrä Z_n.
Mikä on todennäköisyys P(Z_n = r)?
Mikä on todennäköisyys, että peli päättyy joskus (vs. se jatkuu ikuisesti)?Korostettakoon nyt vielä sitä, että ne lisänopat eivät tule sen kierroksen heittelyyn vaan vasta seuraavan!
- Anonyymi
minkkilaukku kirjoitti:
Korostettakoon nyt vielä sitä, että ne lisänopat eivät tule sen kierroksen heittelyyn vaan vasta seuraavan!
Käyt näköjään palstalla keskustelua itsesi kanssa. Vai onko tarkoitus yrittää mainostaa "taitojasi"?
Muita eivät näy juttusi kovin kiinnostavan.
Tehtäväsi ovat tietyssä mielessä varsin keinotekoisen tuntuisia, kuin knoppologian oppikirjasta, jos sellaisia on.
Tehtävät voivat olla triviaaleja (= tylsiä) mutta silti työläitä. On esim. triviaalia laskea kynällä ja paperilla jokin aritmeettinen arvo vaikkapa miljoonasta luvusta mutta työlästä se silti on. Sinun tehtäväsi tuppaavat olemaan tällaisia, triviaaleja mutta työläitä.
Kaikki tällaiset tehtävät ratkeavat tietyllä metodilla jos vain viitsii käyttää aikaansa moiseen. Anonyymi kirjoitti:
Käyt näköjään palstalla keskustelua itsesi kanssa. Vai onko tarkoitus yrittää mainostaa "taitojasi"?
Muita eivät näy juttusi kovin kiinnostavan.
Tehtäväsi ovat tietyssä mielessä varsin keinotekoisen tuntuisia, kuin knoppologian oppikirjasta, jos sellaisia on.
Tehtävät voivat olla triviaaleja (= tylsiä) mutta silti työläitä. On esim. triviaalia laskea kynällä ja paperilla jokin aritmeettinen arvo vaikkapa miljoonasta luvusta mutta työlästä se silti on. Sinun tehtäväsi tuppaavat olemaan tällaisia, triviaaleja mutta työläitä.
Kaikki tällaiset tehtävät ratkeavat tietyllä metodilla jos vain viitsii käyttää aikaansa moiseen.Kiitos kommentistasi. Ensimmäisessä tehtävässä työlyys on mielestäni juuri se pointti. Vähänkään suuremmille d:n arvoille kaikkein naiveimmat algoritmit (brute1) eivät tule kysymykseen. Kokonaisluvun osituksien määrä kasvaa sekin kyllä eksponentiaalisesti, joten tietysti mieltä jää kaihertamaan olisiko nopeampia algoritmeja olemassa. Tehtävän itsessään tylsyydestä voi sitten olla montaa mieltä. Monimutkainenhan tuo tosiaan on että ei siinä mielessä hyvä ainakaan johdattelevaksi tehtäväksi Markovin ketjuihin. Minusta ne todennäköisyyksien laskemiset oli kyllä ihan mukavat pohtia. Tietokoneella ratkaistavaksi se on tietysti tarkoitettu.
Mutta tämä jälkimmäinen tehtävä on mitä mainioin johdatteleva tehtävä "branching" prosesseihin ja geometrinen jakauma yhden nopan tuottamille lisänopille on valittu siksi, koska siinä tapauksessa populaation koko jakauma voidaan ratkaista. Pelin häviämistodennäköisyys taas voidaan ratkaista suoraan, kun tiedetään yhden nopan pgf. Erittäin epätriviaalia ja yleisesti sovellettavissa olevaa siis, sanoisin. Hyvä linkki materiaaleihin: https://www.stat.auckland.ac.nz/~fewster/325/notes/ch7.pdf (vaihda chx, eri kappaleisiin, notes sivulla kaikki)
- Anonyymi
Ihan mielenkiintoisia, itsellä jäi tosin yrittämättä...
t. eri anonyymi
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Useita puukotettu Tampereella
Mikäs homma tämä nyt taas on? "Useaa henkilöä on puukotettu Tampereen keskustassa kauppakeskus Ratinan lähistöllä." ht1462912Asiakas iski kaupassa varastelua tehneen kanveesiin.
https://www.iltalehti.fi/kotimaa/a/33a85463-e4d5-45ed-8014-db51fe8079ec Oikein. Näin sitä pitää. Kyllä kaupoissa valtava3672047- 401777
Kuka rääkkää eläimiä Puolangalla?
Poliisi ampui toistakymmentä nälkiintynyttä eläintä Puolangalla Tilalta oli ollut karkuteillä lähes viisikymmentä nälkii371742Meneeköhän sulla
oikeasti pinnan alla yhtä huonosti kuin mulla? Tai yhtä huonosti mutta jollain eri tyylillä? Ei olisi pitänyt jättää sua321421Jos ei tiedä mitä toisesta haluaa
Älä missään nimessä anna mitään merkkejä kiinnostuksesta. Ole haluamatta mitään. Täytyy ajatella toistakin. Ei kukaan em931221- 541173
Muutama kysymys ja huomio hindulaisesta kulttuurista.
Vedakirjoituksia pidetään historiallisina teksteinä, ei siis "julistuksena" kuten esimerkiksi Raamattua, vaan kuten koul328965Jumala puhui minulle
Hän kertoi sinusta asioita, joiden takia jaksan, uskon ja luotan. Hän kuvaili sinua minulle ja pakahduin onnesta kuulles110948Annan meille mahdollisuuden
Olen avoimin mielin ja katson miten asiat etenevät. Mutta tällä kertaa sun on tehtävä eka siirto.Sen jälkeen olen täysil53782