Sulkeuman määrääminen

Anonyymi

Tämmöinen tehtävä: olkoon A reaalilukujen osajoukko s.e. A=(0,1) U {2}. Määrää sulkeuma joukon R kofiniittisessa topologiassa.

Tässä topologiassa ainoat suljetut joukot ovat äärelliset joukot ja koko avaruus. Komplementti koostuu yhdisteestä (-inf, 0] U [1,2) U (2,inf). Määritelmän mukaan komplementin olisi oltava äärellinen, mutta tuohan on ääretön. Onko joukon sulkeuma nyt koko avaruus?

6

174

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Joukon A sulkeuma on pienin suljettu joukko, joka sisältää A:n. Eli toisin sanoen sulkeuma on leikkaus kaikista suljetuista joukoista, jotka sisältävät A:n. Millainen on suljettu joukko joka sisältää A:n? Se sisältää A:n joten sen on oltava ääretön joukko. Koska se on suljettu, on ainoa mahdollisuus koko R.
      Siis leikkauksessa on mukana vain R, eli siitä tulee R.

      Eli kyllä, lopputulos on koko avaruus, mutta päättelysi ei ollut ihan oikein. Esim kohta
      "Määritelmän mukaan komplementin olisi oltava äärellinen, mutta tuohan on ääretön. "
      Tämähän on avoimen joukon määritelmä. Mutta se on nyt A:n sulkeuma jota yritetään löytää, ei osoittaa A:ta avoimeksi.

      • Anonyymi

        Kiitos avusta! Toinen, mitä olen miettinyt on vasen puolisäde-topologia, missä T={tyhjä joukko, R} U {(-inf,a)} , missä a € R.

        Tämän suljetut joukot ovat tyhjä joukko, R sekä välit [a, inf). Jos a on nolla, niin silloin saisin suljetun välin [0, inf), mihin sisältyy A. Sulkeuma olisi siis tuo väli. Onko tämä riittävä perustelu?


      • Anonyymi kirjoitti:

        Kiitos avusta! Toinen, mitä olen miettinyt on vasen puolisäde-topologia, missä T={tyhjä joukko, R} U {(-inf,a)} , missä a € R.

        Tämän suljetut joukot ovat tyhjä joukko, R sekä välit [a, inf). Jos a on nolla, niin silloin saisin suljetun välin [0, inf), mihin sisältyy A. Sulkeuma olisi siis tuo väli. Onko tämä riittävä perustelu?

        Joo, A ⊆ [0, inf), ja [0, inf) on suljettu, joten à ⊆ [0, inf). Perusteluun pitäisi vielä lisätä että miksi [0, inf) ⊆ Ã. Se tulee siitä, että à on suljettu ja koska suljetulle joukolle pätee aina se, että jos se sisältää pisteen x, niin se sisältää myös välin [x, inf), niin siitähän se seuraa, sillä 0∈A ⊆ Ã.

        (Merkintä Ã on A:n sulkeuma.)


      • minkkilaukku kirjoitti:

        Joo, A ⊆ [0, inf), ja [0, inf) on suljettu, joten à ⊆ [0, inf). Perusteluun pitäisi vielä lisätä että miksi [0, inf) ⊆ Ã. Se tulee siitä, että à on suljettu ja koska suljetulle joukolle pätee aina se, että jos se sisältää pisteen x, niin se sisältää myös välin [x, inf), niin siitähän se seuraa, sillä 0∈A ⊆ Ã.

        (Merkintä Ã on A:n sulkeuma.)

        Sori, nollahan ei kuulunut A:han, joten se perustelu vaatii vähän lisää...
        Tee niin, että osoita ettei à voi olla [x, inf) millekään x>0, joten jäljelle jää ainoa vaihtoehto [0, inf).


      • Anonyymi
        Anonyymi kirjoitti:

        Kiitos avusta! Toinen, mitä olen miettinyt on vasen puolisäde-topologia, missä T={tyhjä joukko, R} U {(-inf,a)} , missä a € R.

        Tämän suljetut joukot ovat tyhjä joukko, R sekä välit [a, inf). Jos a on nolla, niin silloin saisin suljetun välin [0, inf), mihin sisältyy A. Sulkeuma olisi siis tuo väli. Onko tämä riittävä perustelu?

        Kirjoitan suljetun joukon näin: /a,b/, avoimen (a,b), puoliavoimen /a,b) tsai (a,b/.

        Suljetut joukot ovat siis tyhjä joukko, R ja muotoa /a,inf) olevat joukot missä a on reaaliluku.
        A on osajoukkona jokaisessa joukossa /a,inf) missä a <= 0. Nämä ovat suljettuja ja ainoita suljettuja jotka sisältävät A:n.
        A:n sulkeuma on näiden leikkaus eli /0,inf).


      • Anonyymi
        Anonyymi kirjoitti:

        Kirjoitan suljetun joukon näin: /a,b/, avoimen (a,b), puoliavoimen /a,b) tsai (a,b/.

        Suljetut joukot ovat siis tyhjä joukko, R ja muotoa /a,inf) olevat joukot missä a on reaaliluku.
        A on osajoukkona jokaisessa joukossa /a,inf) missä a <= 0. Nämä ovat suljettuja ja ainoita suljettuja jotka sisältävät A:n.
        A:n sulkeuma on näiden leikkaus eli /0,inf).

        Pieni korjaus: myös R on suljettu joukko, joka sisältää osajoukkonaan A:n. Mutta R myös sisältää jokaisen noista joukoista /a,inf) missä a <= 0 joten leikkaus on sama /0,inf).


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. YLE Äänekosken kaupunginjohtaja saa ankaraa arvostelua

      Kaupungin johtaja saa ankaraa kritiikkiä äkkiväärästä henkilöstöjohtamisestaan. Uusin häirintäilmoitus päivätty 15 kesä
      Äänekoski
      101
      2170
    2. Euroopan lämpöennätys, 48,8, astetta, on mitattu Italian Sisiliassa

      Joko hitaampikin ymmärtää. Se on aivan liikaa. Ilmastonmuutos on totta Euroopassakin.
      Maailman menoa
      301
      1972
    3. Useita puukotettu Tampereella

      Mikäs homma tämä nyt taas on? "Useaa henkilöä on puukotettu Tampereen keskustassa kauppakeskus Ratinan lähistöllä." ht
      Tampere
      107
      1893
    4. Asiakas iski kaupassa varastelua tehneen kanveesiin.

      https://www.iltalehti.fi/kotimaa/a/33a85463-e4d5-45ed-8014-db51fe8079ec Oikein. Näin sitä pitää. Kyllä kaupoissa valtava
      Maailman menoa
      344
      1771
    5. Martina lähdössä Ibizalle

      Eikä Eskokaan tiennyt matkasta. Nyt ollaan jännän äärellä.
      Kotimaiset julkkisjuorut
      209
      1637
    6. Leipivaaran päällä on kuoleman hiljaista.

      Suru vai suuri helpotus...
      Puolanka
      32
      1391
    7. Kuka rääkkää eläimiä Puolangalla?

      Poliisi ampui toistakymmentä nälkiintynyttä eläintä Puolangalla Tilalta oli ollut karkuteillä lähes viisikymmentä nälkii
      Puolanka
      27
      1189
    8. Jos ei tiedä mitä toisesta haluaa

      Älä missään nimessä anna mitään merkkejä kiinnostuksesta. Ole haluamatta mitään. Täytyy ajatella toistakin. Ei kukaan em
      Ikävä
      94
      1143
    9. Se nainen näyttää hyvältä vaikka painaisi 150kg

      parempi vaan jos on vähän muhkeammassa kunnossa 🤤
      Ikävä
      70
      1120
    10. Määpä tiijän että rakastat

      Minua nimittäin. Samoin hei! Olet mun vastakappaleeni.
      Ikävä
      51
      1067
    Aihe