Sanan osajono on siitä järjestyksessä poimittujen kirjaimien muodostama sana. Esim. sanalla "KISSA" on osajonot (24 kpl)
['', 'A', 'I', 'IA', 'IS', 'ISA', 'ISS', 'ISSA', 'K', 'KA', 'KI', 'KIA', 'KIS', 'KISA', 'KISS', 'KISSA', 'KS', 'KSA', 'KSS', 'KSSA', 'S', 'SA', 'SS', 'SSA']
Nyt kysytään algoritmiä (tai löytyykö jopa jotain kaavaa) jolla laskea näiden määrä annetulle sanalle.
Tutkitaan sitten tapausta jossa sana on n:n pituinen binäärijono.
Esim. jonolla "01101" on osajonot (18 kpl)
['', '0', '00', '001', '01', '010', '0101', '011', '0110', '01101', '0111', '1', '10', '101', '11', '110', '1101', '111']
Mikä on suurin määrä osajonoja mitä n-binäärijonolla voi olla?
Mikä on keskiarvo?
Sanan osajonojen lukumäärä
3
212
Vastaukset
Varmistukseksi että laskut menee oikein, niin mitä saatte seuraavalle?
"OSAJONOJEN LUKUMÄÄRÄN LASKEMINEN"
(myös välit lasketaan merkeiksi). Itse saan 1545659216.Ratkaisu: https://membolicsythod.home.blog/2020/02/29/sanan-osajonojen-lukumaara/
Lisäkysymyksen ensimmäisen kohdan vastaus on f_{n 2} - 1, missä f_k on k:s Fibonacci luku.
Suurin määrää saadaan selvästikin alternoivalla binäärijonolla, sillä aina kannattaa hypätä lähemmäksi, jotta saadaan enemmän kävelyjä (ja mikäli kaksi samaa merkkiä on peräkkäin aiheuttaa tämä toisen yli hyppäämisen edeltävästä merkistä (ja lähtö on -1 eli tyhjä, niin vaikka se olisi heti alussa, niin haittaa tulee)).
Alternoivia on kaksi 0101.... ja 1010.... Näille osajonojen määrä, merkataan sitä a(n), on selvästi yhtäsuuri, sillä toinen saadaan toisesta muuttamalla ykköset nolliksi ja nollat ykkösiksi.
Lasketaan nyt sanan 0101.... (päättyy joko 0 tai 1 riippuen n:n pariteetista) osajonot.
Induktioaskel kaavan todistuksessa menee samaan tyyliin kuin mikä viimeksikin oli missä ratkaisuun tuli Fibonacci luvut. Jaetaan osajonot kolmeen luokkaan:
- tyhjä jono
- 0:lla alkavat
- 1:llä alkavat
Jos osajono v alkaa nollalla, niin silloin loppu eli v[1:] on 101... (pituus n-1):n osajono, induktio-oletuksen mukaan näitä on f_{n 1}-1.
Jos alkaa ykkösellä, niin v[1:] taas on 010... (pituus n-2):n osajono, sillä ensimmäistä nollaa ei ole voitu käyttää, sillä alkoi ykkösellä ja niinkuin tuossa edelläkin se ensimmäinen ykkönen on voitu käyttää tai sitten ei, mutta se loppu on sen lopun osajono joka tapauksessa käytettiin se ensimmäinen ykkönen ekaan paaluun tai myöhemmin. Näitä on f_n - 1.
Siis yhteensä
a(n)
= 1 a_{n-1} a_{n-2}
= 1 f_{n 1} - 1 f_n - 1
= f_{n 2} - 1Tämä jono, kun muuten on täällä: https://oeis.org/A000071 ja siellä on yksi muoto, että mistä tuo tulee: "Number of 001-avoiding binary words of length n - 3", niin onko tuo jotenkin kombinatorisesti nähtävissä tuosta suoraan, kun vähän samaltahan tuo kuulostaa, että kahta nollaa ei tule peräkkäin ja sitten ykköstä. Jos merkataan uudella binäärijonolla sitä indeksien osajonoa, josta osajono muodostetaan niin että 0 merkkaa että ei tule mukaan ja 1 että tulee mukaan, niin olisiko se siitä jotenkin nähtävissä?
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Me työeläkeläiset äänestämme SDP:tä
SDP on luonut koko työeläkejärjestelmän, jonka hedelmistä saamme nyt nauttia. Kansaneläkelaitos on Maalaisliiton tekele,1444857Eikö tunnukin kamalalta, kun en
anna periksi vaikka parhaasi olet tehnyt antaaksesi täystyrmäyksen? Ja kyllähän minä monta iskua olen saanut ja maannut813546SDP on selvästi paras valinta äänestyskopissa
Puolueella on arvomaailma kohdallaan, sillä on hyvä CV itsenäisen Suomen historiassa vastuunkantajana ja hyvinvointivalt302545SDP:n selitykset ontuu pahasti - "On käsitelty heti, mutta kukaan ei tiedä"
Kokoomuslaiset pistää taas demareita nippuun. Tuppuraisen mukaan mukaan SDP:n useat ahdistelutapaukset on käsitelty het402223Kenen juontajan pitäisi voittaa tänään Kultainen Venla? Ehdolla Pimiä, Holma ja Vaaherkumpu
Kultainen Venla gaalassa jaetaan tänään tv-alan palkintoja. Yksi suosituimmista kategorioista on Juontaja. Vappu Pimiä652061Antti Lindtman: "Ainahan kaikenlaisia huhuja liikkuu"
Näin hän siis vastaa SDP:n häirintäkohuun, väistelee vastuutaan Juttuhan on niin, että Lindtman ja Tuppurainen on tasan632013Oletko nainen turhautunut, kun en tule juttelemaan siellä?
Haluaisin tottakai tulla. Älä käsitä väärin. Ehkä ensi kerralla?231981Mitä saa sanoa?
Palstalla tänään sanottua: ” Kaikki riippuu siitä, miten asian esittää,” Onko siis niin, että saa muita pomottaa ja851973Onko olemassa miehiä, jotka haluavat yhteydenpitoa?
Silloin tällöin viestiä, puntarointeja arkielämästä, ikäänkuin pientä viihdettä ilman sen kummallisempaa. Tällaista miet191458Mitä Trump itse pitäisi siitä, jos häntä solvattaisiin
Kuten hän solvasi muita mm. Macronia? Kyllä ei huumori enää kukkisi. White house on nykyään pelkkä vitsi vain, ei mitään991262
