Kaikkihan tietävät että alkuluvuissa on mielivaltaisen suuria hyppyjä (luvut n! 2, n! 3, ..., n! n ovat kaikki yhdistettyjä lukuja).
Mutta entäpä jos halutaan että alkuluvusta hyppy edelliseen ja seuraavaan ovat molemmat mielivaltaisen suuria? Eli ts. jos on annettu n, niin löytyykö aina alkuluku p, siten että luvut p-n, ..., p-1, p 1, ..., p n ovat yhdistettyjä lukuja?
Eristetyt alkuluvut
2
227
Vastaukset
- Anonyymi
Löytyy, Perustelu tosin vaatii melko pitkälle lukuteorian tuntemusta. Alkulukujen keskimääräinen esiintymistiheys harvenee lukujen kasvaessa, joska tulos seuraa.
Kuinka se nähdään pelkän tiheyden avulla? Nehän voisi olla siten että kaksi on aina melko lähekkäin ja sitten taas suuri hyppy, jonka jälkeen taas kaksi lähekkäin, jne.
Tässä eräs todistus, joka mukailee tuota "yhden hypyn todistusta", mutta käyttää sekin aika järeää lausetta, nimittäin Dirichlet'n lausetta https://en.wikipedia.org/wiki/Dirichlet's_theorem_on_arithmetic_progressions , jonka mukaan muotoa a md, m ∈ N olevia alkulukuja on äärettömän monta, kun syt(a, d)=1.
Olkoon haluttu eristysmatka n annettu. Valitaan jokin alkuluku q>n 2.
Merkitään
M = 2*3*...*(q-1) * (q 1) * ... * (2q-1)
(Eli samoin kuin yhdelle hypylle otettiin n!, niin nyt q:n molemmin puolin kerrotaan q-1:n matkalta kaikki luvut keskenään.)
Nyt, koska q on alkuluku eikä jaa mitään tulon termeistä, niin syt(M, q) = 1.
Valitaan sitten (Dirichlet'n lauseen takaama) alkuluku p, jolle pätee p = M*t q, jollekin t>0.
Nyt p on haluttu eristetty alkuluku, sillä jokaiselle k = 1, 2, ..., n
p - k = M*t q-k, joka on jaollinen q-k:lla, sillä (q-k) | M
ja
p k = M*t q k, joka on jaollinen q k:lla, sillä (q k) | M.
Huomioita:
Itse asiassa yllä (kuten yhden hypyn tapauksessakaan) ei olisi tarvinnut ottaa M:ksi koko tuloa, vaan termien pyj olisi riittänyt.
Dirichlet'n lauseen äärrettömyys-osaa, saati tasa-jakauteneisuutta ei olisi tarvittu. Riittää, että löytyy yksi alkuluku p muotoa p = M*t q, t>=1. Mutta onko tälle asialle olemassa helpompaa todistusta menemättä Dirichlet'n lauseen kautta? Ainakin tässä videossa: https://www.youtube.com/watch?v=zG185Ef1gPM&list=PLU3f-I7n3Bhxge578PJZptOLPUlxs3RBP&index=9&t=473 vihjataan, että se ei aivan triviaalia olisi.
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
SDP jo 100 % suositumpi kuin persut
Kertoo Hesarin uusin kannatuskysely. Demareiden kannatus on miltei tuplat verrattuna persuihinl. Suomen kansa ei selväst29414647Valtavasti suomalaisia asunnottomina, mutta ei yhtään somalia
tai muuta kehitysmaalaista. Mites tässä näin kävi? Tiedän hyvin, että esim. somaleita lentää ulos mm. Hekan asunnoista,1714197PS ylivoimainen nousija myös HS:n gallupissa, SDP laskee taas
https://www.verkkouutiset.fi/a/hs-gallup-sdpn-suosio-laskee-ps-nousussa/#0a7d2507 Ylivoimainen viime kuukausien nousija1353891Totuuspuolueen johtaja Jaana "prinsessa Leia" Kavonius on vangittu
Kavonius määrättiin jo keväällä 2024 poissaolevana vangittavaksi todennäköisin syin epäiltynä 13 vainoamisesta ja 24 kun4481860Kovia syytöksiä Stefan Thermaninsta.
Jättänyt taas maksamatta kohuliikemies, hupparit ja muita ostamiaan tavaroita. On soiteltu liikkeestä ja Stefan iskenyt1831839En minä kyllä enää odota sinua
Olet siellä sen harmaan kanssa. Niin, annoit minun nähdä lämpimät tunteesi siitä huolimatta. Se merkitsi kyllä paljon. O351736Jos joku luulee että kaikki käy
Sanon vain tämän. Minun kanssani ei neuvotella. Minun kanssani eletään tasavertaisesti. Jos se on liikaa, niin ovi rinn521385Joka kolmas työtön on työkyvytön
Viime vuonna työnhakuvelvoitteen ulkopuolella oli noin kolmannes työttömistä työnhakijoista. Huhheijaa, mihin suomalais1521231Sakin hivutus - ilmiö
Miten tuollainen tuollainen ilmiö kuin ”sakin hivutus” syntyy? Mitä syitä ilmiön syntymiseen tarvitaan? Onko sakissa jok661163Ei ole rohkeutta tulla jututtamaan
Voidaan me nähdä ja tervehtiä, sitäkin harvoin, mutta iso kynnys on edes mennä lähelle ja kysyä kuulumisia. Ymmärrät var81141