Eristetyt alkuluvut

Kaikkihan tietävät että alkuluvuissa on mielivaltaisen suuria hyppyjä (luvut n! 2, n! 3, ..., n! n ovat kaikki yhdistettyjä lukuja).

Mutta entäpä jos halutaan että alkuluvusta hyppy edelliseen ja seuraavaan ovat molemmat mielivaltaisen suuria? Eli ts. jos on annettu n, niin löytyykö aina alkuluku p, siten että luvut p-n, ..., p-1, p 1, ..., p n ovat yhdistettyjä lukuja?

2

249

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Löytyy, Perustelu tosin vaatii melko pitkälle lukuteorian tuntemusta. Alkulukujen keskimääräinen esiintymistiheys harvenee lukujen kasvaessa, joska tulos seuraa.

      • Kuinka se nähdään pelkän tiheyden avulla? Nehän voisi olla siten että kaksi on aina melko lähekkäin ja sitten taas suuri hyppy, jonka jälkeen taas kaksi lähekkäin, jne.

        Tässä eräs todistus, joka mukailee tuota "yhden hypyn todistusta", mutta käyttää sekin aika järeää lausetta, nimittäin Dirichlet'n lausetta https://en.wikipedia.org/wiki/Dirichlet's_theorem_on_arithmetic_progressions , jonka mukaan muotoa a md, m ∈ N olevia alkulukuja on äärettömän monta, kun syt(a, d)=1.

        Olkoon haluttu eristysmatka n annettu. Valitaan jokin alkuluku q>n 2.
        Merkitään
        M = 2*3*...*(q-1) * (q 1) * ... * (2q-1)
        (Eli samoin kuin yhdelle hypylle otettiin n!, niin nyt q:n molemmin puolin kerrotaan q-1:n matkalta kaikki luvut keskenään.)
        Nyt, koska q on alkuluku eikä jaa mitään tulon termeistä, niin syt(M, q) = 1.
        Valitaan sitten (Dirichlet'n lauseen takaama) alkuluku p, jolle pätee p = M*t q, jollekin t>0.
        Nyt p on haluttu eristetty alkuluku, sillä jokaiselle k = 1, 2, ..., n

        p - k = M*t q-k, joka on jaollinen q-k:lla, sillä (q-k) | M
        ja
        p k = M*t q k, joka on jaollinen q k:lla, sillä (q k) | M.

        Huomioita:

        Itse asiassa yllä (kuten yhden hypyn tapauksessakaan) ei olisi tarvinnut ottaa M:ksi koko tuloa, vaan termien pyj olisi riittänyt.

        Dirichlet'n lauseen äärrettömyys-osaa, saati tasa-jakauteneisuutta ei olisi tarvittu. Riittää, että löytyy yksi alkuluku p muotoa p = M*t q, t>=1. Mutta onko tälle asialle olemassa helpompaa todistusta menemättä Dirichlet'n lauseen kautta? Ainakin tässä videossa: https://www.youtube.com/watch?v=zG185Ef1gPM&list=PLU3f-I7n3Bhxge578PJZptOLPUlxs3RBP&index=9&t=473 vihjataan, että se ei aivan triviaalia olisi.


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Vuonna 2026 jää entistä vähemmän rahaa käteen palkansaajille

      Työttömyysvakuutusmaksu nousee 0,3 prosenttia. Työeläkemaksu nousee 7,15 prosentista 7,3 prosenttiin. Työmarkkinajärjest
      Maailman menoa
      116
      7133
    2. Suomen kansa puhunut: Purra huonoimpia ministereitä

      Kouluarvosanalla 6–, eli samaa tasoa mitä Purran oikeakin koulutodistus. Epäpätevyys on tullut huomattua Suomen talouden
      Maailman menoa
      494
      5271
    3. Mitä aiot tehdä uudenvuoden aattona

      Mitä olet suunnitellut tekeväsi uudenvuoden aattona ja aiotko ensi vuonna tehdä jotain muutoksia tai uudenvuoden lupauks
      Sinkut
      146
      3240
    4. Joulun ruokajonoissa entistä enemmän avuntarvitsijoita - Mitä ajatuksia tämä herättää?

      Räppärit Mikael Gabriel, VilleGalle ja Jare Brand jakoivat ruokaa ja pehmeitäkin paketteja vähävaraisille jouluaattoa ed
      Maailman menoa
      215
      2621
    5. Marin sitä, Marin tätä, yhyy yhyy, persut jaksaa vollottaa

      On nuo persut kyllä surkeaa porukkaa. Edelleen itkevät jonkun Marinin perään, vaikka itse ovat tuhonneet Suomen kansan t
      Maailman menoa
      38
      2307
    6. Pituuden mittaaminen

      Ihmisen pituuden mittaaminen ja puolikkaat senttimetrit. Kuuluuko ne puolikkaatkin sentit tai millit teistä ilmoittaa m
      Sinkut
      43
      1272
    7. En tiedä enää

      Pitäiskö mun koittaa vältellä sua vai mitä? Oon välillä ollut hieman mustasukkainen, myönnän. En ymmärrä miksi en saa su
      Ikävä
      77
      1232
    8. Varsinainen vetonaula tämä Pyhäjärven keskustelupalsta

      Lisää kummasti muuttohaluja, kun lukee tätä foorumia. Tosin väärään suuntaan. Marraskuuhun mennessä tämä vähäinenkin vä
      Pyhäjärvi
      68
      1168
    9. Muistattekos kuinka persujen Salainen Akentti kävi Putinin leirillä

      Hakemassa jamesbondimaista vakoiluoppia paikan päällä Venäjällä? Siitä ei edes Suomea suojeleva viranomainen saanut puhu
      Maailman menoa
      11
      1159
    10. Mitäköhän vuosi

      2026 tuo tullessaan?
      Ikävä
      111
      1133
    Aihe