Kaikkihan tietävät että alkuluvuissa on mielivaltaisen suuria hyppyjä (luvut n! 2, n! 3, ..., n! n ovat kaikki yhdistettyjä lukuja).
Mutta entäpä jos halutaan että alkuluvusta hyppy edelliseen ja seuraavaan ovat molemmat mielivaltaisen suuria? Eli ts. jos on annettu n, niin löytyykö aina alkuluku p, siten että luvut p-n, ..., p-1, p 1, ..., p n ovat yhdistettyjä lukuja?
Eristetyt alkuluvut
2
193
Vastaukset
- Anonyymi
Löytyy, Perustelu tosin vaatii melko pitkälle lukuteorian tuntemusta. Alkulukujen keskimääräinen esiintymistiheys harvenee lukujen kasvaessa, joska tulos seuraa.
Kuinka se nähdään pelkän tiheyden avulla? Nehän voisi olla siten että kaksi on aina melko lähekkäin ja sitten taas suuri hyppy, jonka jälkeen taas kaksi lähekkäin, jne.
Tässä eräs todistus, joka mukailee tuota "yhden hypyn todistusta", mutta käyttää sekin aika järeää lausetta, nimittäin Dirichlet'n lausetta https://en.wikipedia.org/wiki/Dirichlet's_theorem_on_arithmetic_progressions , jonka mukaan muotoa a md, m ∈ N olevia alkulukuja on äärettömän monta, kun syt(a, d)=1.
Olkoon haluttu eristysmatka n annettu. Valitaan jokin alkuluku q>n 2.
Merkitään
M = 2*3*...*(q-1) * (q 1) * ... * (2q-1)
(Eli samoin kuin yhdelle hypylle otettiin n!, niin nyt q:n molemmin puolin kerrotaan q-1:n matkalta kaikki luvut keskenään.)
Nyt, koska q on alkuluku eikä jaa mitään tulon termeistä, niin syt(M, q) = 1.
Valitaan sitten (Dirichlet'n lauseen takaama) alkuluku p, jolle pätee p = M*t q, jollekin t>0.
Nyt p on haluttu eristetty alkuluku, sillä jokaiselle k = 1, 2, ..., n
p - k = M*t q-k, joka on jaollinen q-k:lla, sillä (q-k) | M
ja
p k = M*t q k, joka on jaollinen q k:lla, sillä (q k) | M.
Huomioita:
Itse asiassa yllä (kuten yhden hypyn tapauksessakaan) ei olisi tarvinnut ottaa M:ksi koko tuloa, vaan termien pyj olisi riittänyt.
Dirichlet'n lauseen äärrettömyys-osaa, saati tasa-jakauteneisuutta ei olisi tarvittu. Riittää, että löytyy yksi alkuluku p muotoa p = M*t q, t>=1. Mutta onko tälle asialle olemassa helpompaa todistusta menemättä Dirichlet'n lauseen kautta? Ainakin tässä videossa: https://www.youtube.com/watch?v=zG185Ef1gPM&list=PLU3f-I7n3Bhxge578PJZptOLPUlxs3RBP&index=9&t=473 vihjataan, että se ei aivan triviaalia olisi.
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Ensi kesänä
Näin kesän viimeisenä minuutteina ajattelen sinua. Olisiko seuraava kesä "meidän" kesä? Tänä vuonna ei onnistuttu, mutta663382Tukalaa kuumuutta
Tietäisitpä vaan kuinka kuumana olen käynyt viime päivät. Eikä johdu helteestä, vaan sinusta. Mitäköhän taikoja olet teh463192Anne Kukkohovin karmeat velat ovat Suomessa.
Lähtikö se siksi pois Suomesta ? Et on noin kar? mean suuret velat naisella olemassa1232718- 432548
- 311953
Okei, myönnetään,
Oisit sä saanut ottaa ne housutkin pois, mutta ehkä joskus jossain toisaalla. 😘271860- 481636
Mihin hävisi
Mihin hävisi asiallinen keskustelu tositapahtumista, vai pitikö jonkin Hannulle kateellisen näyttää typeryytensä871495- 391330
- 821199