Eristetyt alkuluvut

Kaikkihan tietävät että alkuluvuissa on mielivaltaisen suuria hyppyjä (luvut n! 2, n! 3, ..., n! n ovat kaikki yhdistettyjä lukuja).

Mutta entäpä jos halutaan että alkuluvusta hyppy edelliseen ja seuraavaan ovat molemmat mielivaltaisen suuria? Eli ts. jos on annettu n, niin löytyykö aina alkuluku p, siten että luvut p-n, ..., p-1, p 1, ..., p n ovat yhdistettyjä lukuja?

2

139

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Löytyy, Perustelu tosin vaatii melko pitkälle lukuteorian tuntemusta. Alkulukujen keskimääräinen esiintymistiheys harvenee lukujen kasvaessa, joska tulos seuraa.

      • Kuinka se nähdään pelkän tiheyden avulla? Nehän voisi olla siten että kaksi on aina melko lähekkäin ja sitten taas suuri hyppy, jonka jälkeen taas kaksi lähekkäin, jne.

        Tässä eräs todistus, joka mukailee tuota "yhden hypyn todistusta", mutta käyttää sekin aika järeää lausetta, nimittäin Dirichlet'n lausetta https://en.wikipedia.org/wiki/Dirichlet's_theorem_on_arithmetic_progressions , jonka mukaan muotoa a md, m ∈ N olevia alkulukuja on äärettömän monta, kun syt(a, d)=1.

        Olkoon haluttu eristysmatka n annettu. Valitaan jokin alkuluku q>n 2.
        Merkitään
        M = 2*3*...*(q-1) * (q 1) * ... * (2q-1)
        (Eli samoin kuin yhdelle hypylle otettiin n!, niin nyt q:n molemmin puolin kerrotaan q-1:n matkalta kaikki luvut keskenään.)
        Nyt, koska q on alkuluku eikä jaa mitään tulon termeistä, niin syt(M, q) = 1.
        Valitaan sitten (Dirichlet'n lauseen takaama) alkuluku p, jolle pätee p = M*t q, jollekin t>0.
        Nyt p on haluttu eristetty alkuluku, sillä jokaiselle k = 1, 2, ..., n

        p - k = M*t q-k, joka on jaollinen q-k:lla, sillä (q-k) | M
        ja
        p k = M*t q k, joka on jaollinen q k:lla, sillä (q k) | M.

        Huomioita:

        Itse asiassa yllä (kuten yhden hypyn tapauksessakaan) ei olisi tarvinnut ottaa M:ksi koko tuloa, vaan termien pyj olisi riittänyt.

        Dirichlet'n lauseen äärrettömyys-osaa, saati tasa-jakauteneisuutta ei olisi tarvittu. Riittää, että löytyy yksi alkuluku p muotoa p = M*t q, t>=1. Mutta onko tälle asialle olemassa helpompaa todistusta menemättä Dirichlet'n lauseen kautta? Ainakin tässä videossa: https://www.youtube.com/watch?v=zG185Ef1gPM&list=PLU3f-I7n3Bhxge578PJZptOLPUlxs3RBP&index=9&t=473 vihjataan, että se ei aivan triviaalia olisi.


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Neljä nuorta kuoli Nurmijärvellä, auto suistui jokeen Onnettomuuden tutkinta on vielä alussa.

      Neljä nuorta kuoli Nurmijärvellä, auto suistui jokeen Onnettomuuden tutkinta on vielä alussa. Poliisi sai lauantaina 4.
      Maailman menoa
      315
      11449
    2. Ja taas kerran

      Mutka ja joki. Kenties liikaa nopeutta. Miksi?
      Nurmijärvi
      217
      4863
    3. Tänään olisn uskaltanut

      Ainakin luulen, kun tänään oli jotenkin varma olo. Olisin vähintään sanonut moi ja jos olisit ollut yksin olisin pyytäny
      Ikävä
      11
      2568
    4. Taitaa olla aika

      laittaa kirjaimet esille. Kuka kaipaa ja ketä.
      Ikävä
      162
      1894
    5. Kirjoita jotain kivaa

      ja positiivista ikäväsi kohteesta. 🫠
      Ikävä
      129
      1891
    6. Tiedäthän että

      Pohdin paljon siirtymistä. Tulen surulliseksi tietyistä tai monistakin asioista. Siksi parempi kun saat elää vapaasti il
      Ikävä
      11
      1247
    7. Tiistaina nähdään.

      Pitkästä aikaa. Minua on alkanut jännittää kovasti se näkeminen ja miten taas osaan olla. En tiedä yhtään oletko kiinnos
      Ikävä
      92
      1228
    8. Rattoisaa lauantai iltaa

      Mitäs tänään tapahtuu? Mitäs kirsikalle kuuluu? Onko lähdössä iltaelämään? 😊✨💞🌆 Minä vietä taas yksinäistä koti-iltaa
      Ikävä
      241
      1146
    9. Sinusta jäi lopulta kuitenkin hyvä kuva

      Vaikka voit ajatella itsestäsi kaikkea, mitä siinä mylläkässä saattoi tapahtua, mutta näin se on. Seurasin kyllä, ja mon
      Ikävä
      40
      1040
    10. Mikset ala

      Vapaan ihmisen kanssa joka tykkää sinusta?
      Ikävä
      84
      931
    Aihe