Todennäköisyydet

Anonyymi

Hei. Kun laskee binomitodennäköisyyksiä, niin miksi ne poikkeaa odotusarvosta.
Esim nopanheitto , kun heitetään 4 kertaa ja lasketaan todennäköisyys silmäluvulle 4.
nCr (4,1)*(1/6) *(5/6)³=0,387
Mutta kun lasketaan odotusarvo, niin se on 4*1/6=0666
Lisäksi binomitodennälöisyys on tietyllä heittojen määrällä suurin, mutta laskee heittojen määrän lisääntyessä ja myös pienentyessä.

Elikö kun heittää suuren määrän heittoja, niin kumpi on lähempänä oletusarvo, vai binomitodennäköisyys.
T Olli

16

253

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Laskemalla odotusarvo, saadaan aina oikea tulos. Päättele siitä. Ja jos lasket jotain muuta, voit myös saada ihan oikean tuloksen johonkin muuhun.

      • Anonyymi

        Niin binomitodennäköisyyttä laskettaessa, lasketaan todennäköisyys, sille, että nelosia tulee 0, 1,2,3, tai neljä. Tuossa yhden nelosen tapauksessa olettaisi, että luku olisi lähellä odotusarvoa.
        Eli en ymmärrä mitä tuo binomitodennäköisyys mittaa


    • Anonyymi

      "Mutta kun lasketaan odotusarvo, niin se on 4*1/6=0,666"

      Mille lasket odotusarvon? Eihän mitään voi laskea, jos ei edes tiedä mitä pitäisi laskea.

    • Anonyymi

      Siis, kun noppaa heitetään neljä kertaa, niin tehtävässä kysytään, että laske binomijakautumalla silmäluvun neljä esiintyminen.

      Eli lasketaan normaalisti binoomikaavalla millä todennäköisyyllä tulee nolla nelosta, ja millä todennäköisyydellä tulee yksi nelonen, millä kaksi nelosta, millä kolme nelosta, ja millä neljä. Siis neljä heittoa ja noille vaihtoehdoille todennäköisyys binomikaavalla

      • Anonyymi

        P(0 nelosta esiintyy) = (5/6)^4
        P(1 nelonen) = C(4,1) * 1/6 * (5/6)^3
        P(2 nelosta) = C(4,2) * (1/6)^2 * (5/6)^2
        P(3 nelosta) = C(4,3) * (1/6)^3 * (5/6)
        P(4 nelosta) = (1/6)^4
        C(n,m) on binomikerroin ja kertoo kuinka monella tavalla n:stä objektista voidaan poimia m eri objektia.
        C(n,m) = n! / (m! (n - m)!)


      • Anonyymi
        Anonyymi kirjoitti:

        P(0 nelosta esiintyy) = (5/6)^4
        P(1 nelonen) = C(4,1) * 1/6 * (5/6)^3
        P(2 nelosta) = C(4,2) * (1/6)^2 * (5/6)^2
        P(3 nelosta) = C(4,3) * (1/6)^3 * (5/6)
        P(4 nelosta) = (1/6)^4
        C(n,m) on binomikerroin ja kertoo kuinka monella tavalla n:stä objektista voidaan poimia m eri objektia.
        C(n,m) = n! / (m! (n - m)!)

        Lisäkommentti: Onkohan aloittajalla odotusarvon käsite selvillä?
        Odotusarvo sille, montako nelosta tulee neljällä heitolla, on

        0*P(0 nelosta) 1*P(1 nelonen) 2* P(2 nelosta) 3* P(3 nelosta) 4* P(4 nelosta)


    • Tuo todennäköisyys nCr (4,1)*(1/6) *(5/6)³=0,387 on todennäköisyys sille, että tulee tasan yksi nelonen, kun heitetään neljä kertaa. Jos toistat neljän heiton sarjaa monta kertaa ja lasket ne sarjat, joissa tuli tasan yksi nelonen, niin tämä suhde lähenee (melkein varmasti) 0,387:aa.

      Odotusarvo 4*1/6 taas kertoo siitä kuinka monta nelosta on odotettavissa yhdessä sarjassa. Jos toistetaan neljän heiton sarjaa ja lasketaan joka sarjasta kuinka monta nelosta siinä tuli, niin näiden lukujen keskiarvo lähenee 0,666:tta.

      • Anonyymi

        Aloittajan kannattaa heittää aina kuuden sarjoja. Kysytyn odotusarvon laskenta helpottuu ja muuttuu ymmärrettäväksi. Ja aina tietysti pitää kertoa koko tehtävän tarkka sanamuoto. Myös ne kohdat, joita ei vielä ymmärrä.


    • Anonyymi

      Jos heität 60 kertaa noppaa, saat odotusarvoksi 60 * 1/6 = 10. Itse asiassa odotusarvo voi olla kuinka suuri tai pieni tahansa, kun taas todennäköisyydet ovat aina väliltä [0,1]. Tässä siis vaikuttaa menneen käsitteiden merkitykset sikin sokin.

      • Anonyymi

        Jos heität noppaa 60 kertaa niin todennäköisyys sille että olet heittänyt noppaa 60 kertaa on aika tarkkaan 1.


      • Anonyymi

        Sekavalta vaikutat itsekin. Minkä satunnaismuuttujan odotusarvosta nyt puhut? Jos se tarkoittamasi muuttuja on saatujen nelosten lukumäärä X, niin

        E(X) = Summa (0 <= i <= 60) ( i * C(60,i) (1/6)î * (5/6)^(60 - i))

        Tn että jollain tietyllä heitolla saat nelosen = 1/6 ja tn että ei tule nelosta = 5/6.


      • Anonyymi
        Anonyymi kirjoitti:

        Sekavalta vaikutat itsekin. Minkä satunnaismuuttujan odotusarvosta nyt puhut? Jos se tarkoittamasi muuttuja on saatujen nelosten lukumäärä X, niin

        E(X) = Summa (0 <= i <= 60) ( i * C(60,i) (1/6)î * (5/6)^(60 - i))

        Tn että jollain tietyllä heitolla saat nelosen = 1/6 ja tn että ei tule nelosta = 5/6.

        Tuli tuohon näppäilyvirhe:
        E(X) = Summa (0 <= i <= 60) (i * C(60,i) * (1/6) ^i * (5/6) ^(60 - i))


      • Anonyymi
        Anonyymi kirjoitti:

        Jos heität noppaa 60 kertaa niin todennäköisyys sille että olet heittänyt noppaa 60 kertaa on aika tarkkaan 1.

        Näin on! Ihmettelen, että vaikka todennäköisyyslaskenta on pohjimmiltaan näin yksinkertaista, miten se tuntuu monista silti niin vaikealta.


    • Anonyymi

      Ihan jännä kysymyshän tämä oli. Tosiaan noissa lasketaan kahta täysin eri asiaa.

      Ensimmäinen on ns. indikaattorimuuttuja sille, että saat täsmälleen yhden nelosen. Se saa arvon 1, jos tulee täsmälleen 1 nelonen, mutta 0, jos tulee jokin muu määrä. Tuo todennäköisyys on nyt tällaisen muuttujan odotusarvo, todennäköisyyden voi yleensä tulkita indikaattorimuuttujan odotusarvoksi.

      Toinen muuttuja (se jolle jälkimmäisessä lasket odotusarvoa) on nelosten määrä. Se saa arvoja ihan eri skaalalla 0-4. Se saa arvon 0, jos ei ole yhtään nelosta, ja arvon 4, jos kaikki ovat nelosia. Sen odotusarvokin on eri skaalalla.

      Kannattaa kuitenkin huomata, että nuo kaksi satunnaismuuttujaa ovat kuitenkin aika lailla samaa asiaa mittaavia. Jälkimmäisestä saa ensimmäisen, jos kuvaa sen arvot 2, 3 ja 4 nolliksi.

    • Anonyymi

      Kyllä pystyy epämatemaatikko selvää asiaa sotkuisesti selitellä!

      • Anonyymi

        P.o.: ...osaa...


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Miksei Björn Wahlroos jaa rahaa köyhille?

      Esimerkiksi Nordean tiloissa? Vai tuovatko ne köyhät hiekkaa marmorilattioille ja siksi ei pysty mursunviiksi pystyyn k
      Maailman menoa
      254
      4338
    2. Vassarit kummittelee pääni sisällä joulunakin

      Hetki sitten alkoi punakapina. Joulupäivään mennessä ollaan jo Lindtmanin nuoruusvuosien näytelmäkerhossa. Tapaninpäivän
      Maailman menoa
      46
      2545
    3. Onko 65-vuotias liian vanha lähtemään rintamalle?

      Suomessa reserviläisikä nousee ensi vuoden alusta 65 ikävuoteen. Jatkossa asevelvollinen kuuluu reserviin sen vuoden lop
      Maailman menoa
      537
      2235
    4. Oho, köyhyys väheni Marinin hallituskaudella

      👋💥🤕 Tuonkin Marinin hallitus sössi --- Vuosien 2019–2023 sosiaaliturva- ja verotusperusteiden muutokset suhteessa h
      Maailman menoa
      59
      2127
    5. Jouluksi miettimistä: kuka tai mikä valmistaa rahan?

      Nyt kun on ollut vääntöä rahasta ja eritoten sen vähyydestä, niin olisi syytä uida rahan alkulähteille, eli mistä se syn
      Maailman menoa
      43
      1830
    6. Yksikään persu ei ole saanut Nobelin palkintoa

      Kertoo paljon persujen älyn puutteesta. Demareista mm. Ahtisaari on kyseisen palkinnon saanut.
      Maailman menoa
      106
      1713
    7. Kohuotsikoihin nousseet Aku Hirviniemi ja Mikko Leppilampi jouluna tv:ssä!

      Täydellinen joulu -leffassa on iso kaarti suomalaisia näyttelijöitä. Mukana mm. Elena Leeve, Antti Luusuaniemi sekä koh
      Kotimainen elokuva
      35
      1684
    8. Kylläpä asiat onkin nyt hyvin verrattuna Sannan aikaan

      Sannan aikana aähkön alv oli 10%, nyt 25,5%. Ajatelkaa nytkin pörssisähkö on ilmaista, keskellä talvea! Bensan hinta on
      Maailman menoa
      3
      1571
    9. Ex-Puoli seitsemän juontaja Anniina Valtonen yllättää - Uudessa roolissa tv:ssä!

      Monen suosikki Anniina Valtonen tv:ssä! Valtonen on tuttu Ylen meteorologina, mutta hän juonsi myös Puoli seiskaa. Nyt A
      Suomalaiset julkkikset
      41
      1361
    10. Mitä metsaman tuottaa

      Törkypuhetta, ahdistusta, pahaa mieltä, riitaa, eripuraa, köyhien menestymättömien ja maattomien kurjien vähättelyä. Sit
      Tuusniemi
      128
      1207
    Aihe