Hei. Kun laskee binomitodennäköisyyksiä, niin miksi ne poikkeaa odotusarvosta.
Esim nopanheitto , kun heitetään 4 kertaa ja lasketaan todennäköisyys silmäluvulle 4.
nCr (4,1)*(1/6) *(5/6)³=0,387
Mutta kun lasketaan odotusarvo, niin se on 4*1/6=0666
Lisäksi binomitodennälöisyys on tietyllä heittojen määrällä suurin, mutta laskee heittojen määrän lisääntyessä ja myös pienentyessä.
Elikö kun heittää suuren määrän heittoja, niin kumpi on lähempänä oletusarvo, vai binomitodennäköisyys.
T Olli
Todennäköisyydet
16
184
Vastaukset
- Anonyymi
Laskemalla odotusarvo, saadaan aina oikea tulos. Päättele siitä. Ja jos lasket jotain muuta, voit myös saada ihan oikean tuloksen johonkin muuhun.
- Anonyymi
Niin binomitodennäköisyyttä laskettaessa, lasketaan todennäköisyys, sille, että nelosia tulee 0, 1,2,3, tai neljä. Tuossa yhden nelosen tapauksessa olettaisi, että luku olisi lähellä odotusarvoa.
Eli en ymmärrä mitä tuo binomitodennäköisyys mittaa
- Anonyymi
"Mutta kun lasketaan odotusarvo, niin se on 4*1/6=0,666"
Mille lasket odotusarvon? Eihän mitään voi laskea, jos ei edes tiedä mitä pitäisi laskea. - Anonyymi
Siis, kun noppaa heitetään neljä kertaa, niin tehtävässä kysytään, että laske binomijakautumalla silmäluvun neljä esiintyminen.
Eli lasketaan normaalisti binoomikaavalla millä todennäköisyyllä tulee nolla nelosta, ja millä todennäköisyydellä tulee yksi nelonen, millä kaksi nelosta, millä kolme nelosta, ja millä neljä. Siis neljä heittoa ja noille vaihtoehdoille todennäköisyys binomikaavalla- Anonyymi
P(0 nelosta esiintyy) = (5/6)^4
P(1 nelonen) = C(4,1) * 1/6 * (5/6)^3
P(2 nelosta) = C(4,2) * (1/6)^2 * (5/6)^2
P(3 nelosta) = C(4,3) * (1/6)^3 * (5/6)
P(4 nelosta) = (1/6)^4
C(n,m) on binomikerroin ja kertoo kuinka monella tavalla n:stä objektista voidaan poimia m eri objektia.
C(n,m) = n! / (m! (n - m)!) - Anonyymi
Anonyymi kirjoitti:
P(0 nelosta esiintyy) = (5/6)^4
P(1 nelonen) = C(4,1) * 1/6 * (5/6)^3
P(2 nelosta) = C(4,2) * (1/6)^2 * (5/6)^2
P(3 nelosta) = C(4,3) * (1/6)^3 * (5/6)
P(4 nelosta) = (1/6)^4
C(n,m) on binomikerroin ja kertoo kuinka monella tavalla n:stä objektista voidaan poimia m eri objektia.
C(n,m) = n! / (m! (n - m)!)Lisäkommentti: Onkohan aloittajalla odotusarvon käsite selvillä?
Odotusarvo sille, montako nelosta tulee neljällä heitolla, on
0*P(0 nelosta) 1*P(1 nelonen) 2* P(2 nelosta) 3* P(3 nelosta) 4* P(4 nelosta)
Tuo todennäköisyys nCr (4,1)*(1/6) *(5/6)³=0,387 on todennäköisyys sille, että tulee tasan yksi nelonen, kun heitetään neljä kertaa. Jos toistat neljän heiton sarjaa monta kertaa ja lasket ne sarjat, joissa tuli tasan yksi nelonen, niin tämä suhde lähenee (melkein varmasti) 0,387:aa.
Odotusarvo 4*1/6 taas kertoo siitä kuinka monta nelosta on odotettavissa yhdessä sarjassa. Jos toistetaan neljän heiton sarjaa ja lasketaan joka sarjasta kuinka monta nelosta siinä tuli, niin näiden lukujen keskiarvo lähenee 0,666:tta.- Anonyymi
Aloittajan kannattaa heittää aina kuuden sarjoja. Kysytyn odotusarvon laskenta helpottuu ja muuttuu ymmärrettäväksi. Ja aina tietysti pitää kertoa koko tehtävän tarkka sanamuoto. Myös ne kohdat, joita ei vielä ymmärrä.
- Anonyymi
Jos heität 60 kertaa noppaa, saat odotusarvoksi 60 * 1/6 = 10. Itse asiassa odotusarvo voi olla kuinka suuri tai pieni tahansa, kun taas todennäköisyydet ovat aina väliltä [0,1]. Tässä siis vaikuttaa menneen käsitteiden merkitykset sikin sokin.
- Anonyymi
Jos heität noppaa 60 kertaa niin todennäköisyys sille että olet heittänyt noppaa 60 kertaa on aika tarkkaan 1.
- Anonyymi
Sekavalta vaikutat itsekin. Minkä satunnaismuuttujan odotusarvosta nyt puhut? Jos se tarkoittamasi muuttuja on saatujen nelosten lukumäärä X, niin
E(X) = Summa (0 <= i <= 60) ( i * C(60,i) (1/6)î * (5/6)^(60 - i))
Tn että jollain tietyllä heitolla saat nelosen = 1/6 ja tn että ei tule nelosta = 5/6. - Anonyymi
Anonyymi kirjoitti:
Sekavalta vaikutat itsekin. Minkä satunnaismuuttujan odotusarvosta nyt puhut? Jos se tarkoittamasi muuttuja on saatujen nelosten lukumäärä X, niin
E(X) = Summa (0 <= i <= 60) ( i * C(60,i) (1/6)î * (5/6)^(60 - i))
Tn että jollain tietyllä heitolla saat nelosen = 1/6 ja tn että ei tule nelosta = 5/6.Tuli tuohon näppäilyvirhe:
E(X) = Summa (0 <= i <= 60) (i * C(60,i) * (1/6) ^i * (5/6) ^(60 - i)) - Anonyymi
Anonyymi kirjoitti:
Jos heität noppaa 60 kertaa niin todennäköisyys sille että olet heittänyt noppaa 60 kertaa on aika tarkkaan 1.
Näin on! Ihmettelen, että vaikka todennäköisyyslaskenta on pohjimmiltaan näin yksinkertaista, miten se tuntuu monista silti niin vaikealta.
- Anonyymi
Ihan jännä kysymyshän tämä oli. Tosiaan noissa lasketaan kahta täysin eri asiaa.
Ensimmäinen on ns. indikaattorimuuttuja sille, että saat täsmälleen yhden nelosen. Se saa arvon 1, jos tulee täsmälleen 1 nelonen, mutta 0, jos tulee jokin muu määrä. Tuo todennäköisyys on nyt tällaisen muuttujan odotusarvo, todennäköisyyden voi yleensä tulkita indikaattorimuuttujan odotusarvoksi.
Toinen muuttuja (se jolle jälkimmäisessä lasket odotusarvoa) on nelosten määrä. Se saa arvoja ihan eri skaalalla 0-4. Se saa arvon 0, jos ei ole yhtään nelosta, ja arvon 4, jos kaikki ovat nelosia. Sen odotusarvokin on eri skaalalla.
Kannattaa kuitenkin huomata, että nuo kaksi satunnaismuuttujaa ovat kuitenkin aika lailla samaa asiaa mittaavia. Jälkimmäisestä saa ensimmäisen, jos kuvaa sen arvot 2, 3 ja 4 nolliksi. - Anonyymi
Kyllä pystyy epämatemaatikko selvää asiaa sotkuisesti selitellä!
- Anonyymi
P.o.: ...osaa...
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Kalle Palander kertoi fantasioivansa siitä, kuinka Kiira Korpi naisi häntä sträppärillä ahteriin
Sai potkut Yleltä. https://yle.fi/a/74-201400006171090124h Kirppis
Olen muuttamassa paikkakunnalle ja mietin olisiko tälläiselle liikkeelle tarvetta alueella?123488Suomessa eletään liian pitkään
"Ihmisten on kuoltava" Asiantuntija varoittaa: Suomi ei ole valmis siihen, että niin moni elää pitkään: ”Kaiken täytyy2392440Kerotakaa joensuun kontiolahden paiholan laitoksesta jotain
Mun kaveri joutuu paiholan laitokseen nyt lähi aikoina niin voisko ihmiset kertoa minkälaista siellä on tarinoita jne ja252318Deodoranttiteollisuus
Annan ilmaisen vinkin. Kyseinen teollisuus voisi alkaa valmistaa kuolleen ruumiin hajua. Olisi varma hittituote, ainakin31660- 1941245
Sun ulkonäkö on
Kyllä viehättävä. Kauniit piirteet. Todella sievät. Ja olemus on ihana. Olet tehnyt vaikutuksen.491214- 721170
Olen niin haaveillut
Sinusta. Ollut hullun rakastunut. Ajatellut kaikkea mitä yhdessä voisimme tehdä. Mutta ei ei yhtään mitään. Usko vaan lo591049Oletko koskaan
Tavannut/tuntenut ihmistä, jonka kanssa vuosisadan rakkaustarina olisi ollut mahdollinen, mutta joku este tuli väliin?77999