Toiseen asteen tikkaat

Anonyymi

Otetaanpas uusi versio vajatehtävästä, jossa tikkaat ovat paraabelin muotoiset. Tikkaat täytyy siis asettaa nojaamaan (korkean) seinän vieressä olevaa vajaa (leveys: a korkeus: b) vasten siten, että tikkaat lähtevät maasta ja päätyvät seinää vasten.
Mitkä ovat lyhyimmät mahdolliset tällaiset paraabelitikkaat?
Ei huomioida sitä kestäisivätkö tikkaat itsestään pystyssä vai ei. Ajatellaan vaikka että ne on kiinnitetty seinään.

Tässä vielä havainnollistava kuva: https://aijaa.com/78oUCG

Kysytään ratkaisuja seuraaville tapauksille
a = 2, b = 3
a = 27/10, b = 187/40
a = 1,529; b = 1,0515

10

97

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Paraabelin huippumuodosta pääsin tulokseen, että paraabeli leikkaisi x-akselin kohdassa x=2*(huipun x-koordinaatti), mutta sitten ei enää etene, tulee epämääräisiä tuloksia...

    • Anonyymi

      Onko tehtävänannossa sanottu, että paraabelin tulee olla (maanpinnan suuntaisen) x-muuttujan funktio? Tuossa esittämässäsi muodossa oikean vastauksen keksiminen on vähän työläämpää, koska paraabeli voisi aueta myös mihin tahansa muuhun suuntaan kuin alaspäin.

      • Anonyymi

        Joo, oletetaan funktioksi f(x) = ax^2 bx c. Mutta tuo yleisempi muoto (tai vaikka sallittaisiin mikä tahansa kartioleikkaus) voisi olla myöskin kiinnostava variaatio.


      • Anonyymi
        Anonyymi kirjoitti:

        Joo, oletetaan funktioksi f(x) = ax^2 bx c. Mutta tuo yleisempi muoto (tai vaikka sallittaisiin mikä tahansa kartioleikkaus) voisi olla myöskin kiinnostava variaatio.

        Ai niin a ja b oli jo käytössä, nuo kertoimet ei samat a ja b.


    • Anonyymi

      Mitä kauempaa paraabelin huipusta ko. paraabelinpalanen leikataan, sitä lyhyempi se on. Eli kun mennään yhä kauemmas huipusta, paraabelin muoto lähenee suoraa.

    • Anonyymi

      y=Ax^2 Bx C
      Pitäisköhän tossa vaan antaa C:lle arvoja 3,3.1,3.2,...jne, ja laskea B tiedosta (2,3), sekä paraabelin ja x-akselin lp, joka sekin sisältää A:n.
      Sitten pituuden integrointi, ja A:n suhteen derivointi ja löytyy(vitsi) lyhimmät tikkaat kun C=3
      Sitten uusi C=3.1, ja verrataan tuloksia.... Käsipelillä ei onnistu.

      • Anonyymi

        Joo, ei se mene ihan noin suoraviivaisesti. Siitä derivaatan 0-kohdasta ei ole apua, vaan jos se paraabelin ja x-akselin leikkauskohta on A:n funktio, niin sen derivaatan epäjatkuvuuskohdasta päästään eteenpäin, ja siinäkin täytyy sitten jostain syystä vaihtaa etumerkkejä.
        Kaksi paraabelin yhtälöä laskin:
        y=-3x^2 6x 3
        y=-3.7458x^2 7.2416x 3.5

        Pituuksia en enää jaksa laskea, enkä tätä enää muutenkaan..


      • Anonyymi
        Anonyymi kirjoitti:

        Joo, ei se mene ihan noin suoraviivaisesti. Siitä derivaatan 0-kohdasta ei ole apua, vaan jos se paraabelin ja x-akselin leikkauskohta on A:n funktio, niin sen derivaatan epäjatkuvuuskohdasta päästään eteenpäin, ja siinäkin täytyy sitten jostain syystä vaihtaa etumerkkejä.
        Kaksi paraabelin yhtälöä laskin:
        y=-3x^2 6x 3
        y=-3.7458x^2 7.2416x 3.5

        Pituuksia en enää jaksa laskea, enkä tätä enää muutenkaan..

        yhden vielä laskin: y=-4.37x^2 7.24x 6
        kuvista näyttäis, että tuo C=3 paraabelin kaari olis lyhin, pitäis laskee, mutta hankala integrointi...


      • Anonyymi

        Minä sain optimaaliseksi paraabeliksi

        −0.48039x^2 0.7506x 3.420375

        Hyvin lähellä muuten lukua -2 tuon toinen juuri, mutta ei kuitenkaan ihan (niillä tarkkuuksilla millä sain ratkaisun). Liekkö vain hauska sattuma?


    • Anonyymi

      Otetaan akseleiden leikkaus-koordinaatit muuttujiksi ja ratkaistaan ratkaistaan kertoimet (Lagrangen interpolaatiolla saadaan 2. asteen polynomi, joka kulkee kolmen annetun pisteen kautta.) Ratkaistaan sitten optimiarvo numeerisesti.

      https://www.desmos.com/calculator/x6unx8udkv

      Voisihan sitä ottaa polynomin kertoimet muuttujiksi ja sitten kirjoittaa ehdot rajoituksiksi. Tai jos ottaisi x-leikkauksen yhdeksi muuttujaksi ja sitten loput kertoimet eli f olisi muotoa (x-x1)*(c_{n-1}x^(n-1) ... c0), niin ainakin se vaadittu nollakohta > a löytyisi (kun lisää x1:lle ehdon x1>a). Kun minä Sagella tuota numeerista optimointia tein, niin jotenkin se minimize_constrained() -funktio ei aina kunnioita niitä annettuja ehtoja, vaan antaa joskus ratkaisun myös kielletyltä alueelta. Noh, tuossa minä tein niin, että etsitään sitä nollakohtaa ja jos sitä ei löydy, niin otetaan vaan joku suuri luku, jota käytetään integroinnissa, niin sen pitäisi kyllä rajoittaa menemistä rajoitetulle alueelle

      https://www.desmos.com/calculator/dl0kjts89b

      Tuo oli siis yleisemmälle kolmannen jne. asteen. (Mutta tässä en ole varma onko suuremmille löydetty optimi enää globaali minimi, sillä se tuntui vaihtelevan kun kokeili satunnaisia lähtöarvoja).
      Paraabelin kaaren pituudellehan saa myös analyyttisen kaavan hyperbelisen arkussinin avulla, mutta en tiedä onko siitä paljon apua, koska kaavasta tulee kuitenkin hyvin monimutkainen, niin en tiedä onko sen analyyttiseen ratkaisemiseen toivoa. Tässä kuitenkin vielä toinen versio, jossa kiinnitetylle x1:n arvolle minimointi y1:n suhteen tehty, niin minimin voi sitten itse etsiä vain vetämällä x1:stä itse oikeaan kohtaan Desmoksessa:

      https://www.desmos.com/calculator/yrn6m4siq8

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Selvästi näyttää siltä, että SDP:n kannattajat hyväksyy kiusaamisen

      ja seksuaalisen ahdistelun, kun puolueen kannatus pysyy korkealla. Mitä tämä kertoo demari-äänestäjien moraalista?
      Maailman menoa
      72
      2719
    2. Kyllä nämä nyky autonakut ja autotki on heikloja

      Vuoden vanha akku, eikä inahdakaan.... Pistin vara-akun just lataukseen ja lähen sillä antamaan apuvirtaa Jos ei toimi,
      Ikävä
      25
      2468
    3. Päivi Räsäsen seksipaljastus loksauttaa Katja Ståhlin leuat! Elämäni biisi kohujakso tv:ssä!

      Elämäni biisi -suosikkisarjan uusinnat ovat startanneet ja nyt vuorossa on sarjan 2. jakso v. 2019. Sinisille sohville
      Suomalaiset julkkikset
      42
      2151
    4. Muistan vuosikymmenten takaa

      Toivottavasti voit hyvin ja jaksat työssäsi. Olet upea ja erinomainen ihminen, toivon kaikkea hyvää.
      Ikävä
      13
      2006
    5. Montako mitalia Suomi saa talviolympialaisista?

      Nyt heittäkää veikkaus Suomen mitalisaldosta ja mistä lajeista metallilätkät tulevat. Oma veikkaukseni on 6 mitalia. -
      Maailman menoa
      110
      1492
    6. Voiko kaivattu olla liian vanha?

      Tai muuten huonokuntoinen...
      Ikävä
      167
      1343
    7. Missä näit viimeksi kaivattusi?

      Menikö kohtaaminen hyvin vai ujousko esti lähestymästä?
      Ikävä
      52
      1022
    8. Kokemuksia Rehux Oy yrityksestä työpaikkana?

      Jonkin aikaa seurannut kyseistä firmaa sivusta, näyttäisi, että tälläkin hetkellä olisi peräti 3 eri roolia tai paikkaa
      Työpaikat
      28
      964
    9. IS: Riitta Väisänen kärsii ikävästä vaivasta - Vaipparalli ja 40 antibioottikuuria takana...

      71-vuotias Riitta Väisänen on kertonut tuoreista terveysongelmistaan. Väisänen on kertonut julkisuudessa jo aiemmin vaih
      Terveys
      16
      788
    10. Jos mies oikeasti haluaa sinut

      Hän ei ota riskiä että menettäisi sinut. Ei pienintäkään. Mies ei jätä vastaamatta viesteihin eikä pidä sinua epätietois
      Ikävä
      99
      781
    Aihe