Toiseen asteen tikkaat

Anonyymi

Otetaanpas uusi versio vajatehtävästä, jossa tikkaat ovat paraabelin muotoiset. Tikkaat täytyy siis asettaa nojaamaan (korkean) seinän vieressä olevaa vajaa (leveys: a korkeus: b) vasten siten, että tikkaat lähtevät maasta ja päätyvät seinää vasten.
Mitkä ovat lyhyimmät mahdolliset tällaiset paraabelitikkaat?
Ei huomioida sitä kestäisivätkö tikkaat itsestään pystyssä vai ei. Ajatellaan vaikka että ne on kiinnitetty seinään.

Tässä vielä havainnollistava kuva: https://aijaa.com/78oUCG

Kysytään ratkaisuja seuraaville tapauksille
a = 2, b = 3
a = 27/10, b = 187/40
a = 1,529; b = 1,0515

10

<50

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Paraabelin huippumuodosta pääsin tulokseen, että paraabeli leikkaisi x-akselin kohdassa x=2*(huipun x-koordinaatti), mutta sitten ei enää etene, tulee epämääräisiä tuloksia...

    • Anonyymi

      Onko tehtävänannossa sanottu, että paraabelin tulee olla (maanpinnan suuntaisen) x-muuttujan funktio? Tuossa esittämässäsi muodossa oikean vastauksen keksiminen on vähän työläämpää, koska paraabeli voisi aueta myös mihin tahansa muuhun suuntaan kuin alaspäin.

      • Anonyymi

        Joo, oletetaan funktioksi f(x) = ax^2 bx c. Mutta tuo yleisempi muoto (tai vaikka sallittaisiin mikä tahansa kartioleikkaus) voisi olla myöskin kiinnostava variaatio.


      • Anonyymi
        Anonyymi kirjoitti:

        Joo, oletetaan funktioksi f(x) = ax^2 bx c. Mutta tuo yleisempi muoto (tai vaikka sallittaisiin mikä tahansa kartioleikkaus) voisi olla myöskin kiinnostava variaatio.

        Ai niin a ja b oli jo käytössä, nuo kertoimet ei samat a ja b.


    • Anonyymi

      Mitä kauempaa paraabelin huipusta ko. paraabelinpalanen leikataan, sitä lyhyempi se on. Eli kun mennään yhä kauemmas huipusta, paraabelin muoto lähenee suoraa.

    • Anonyymi

      y=Ax^2 Bx C
      Pitäisköhän tossa vaan antaa C:lle arvoja 3,3.1,3.2,...jne, ja laskea B tiedosta (2,3), sekä paraabelin ja x-akselin lp, joka sekin sisältää A:n.
      Sitten pituuden integrointi, ja A:n suhteen derivointi ja löytyy(vitsi) lyhimmät tikkaat kun C=3
      Sitten uusi C=3.1, ja verrataan tuloksia.... Käsipelillä ei onnistu.

      • Anonyymi

        Joo, ei se mene ihan noin suoraviivaisesti. Siitä derivaatan 0-kohdasta ei ole apua, vaan jos se paraabelin ja x-akselin leikkauskohta on A:n funktio, niin sen derivaatan epäjatkuvuuskohdasta päästään eteenpäin, ja siinäkin täytyy sitten jostain syystä vaihtaa etumerkkejä.
        Kaksi paraabelin yhtälöä laskin:
        y=-3x^2 6x 3
        y=-3.7458x^2 7.2416x 3.5

        Pituuksia en enää jaksa laskea, enkä tätä enää muutenkaan..


      • Anonyymi
        Anonyymi kirjoitti:

        Joo, ei se mene ihan noin suoraviivaisesti. Siitä derivaatan 0-kohdasta ei ole apua, vaan jos se paraabelin ja x-akselin leikkauskohta on A:n funktio, niin sen derivaatan epäjatkuvuuskohdasta päästään eteenpäin, ja siinäkin täytyy sitten jostain syystä vaihtaa etumerkkejä.
        Kaksi paraabelin yhtälöä laskin:
        y=-3x^2 6x 3
        y=-3.7458x^2 7.2416x 3.5

        Pituuksia en enää jaksa laskea, enkä tätä enää muutenkaan..

        yhden vielä laskin: y=-4.37x^2 7.24x 6
        kuvista näyttäis, että tuo C=3 paraabelin kaari olis lyhin, pitäis laskee, mutta hankala integrointi...


      • Anonyymi

        Minä sain optimaaliseksi paraabeliksi

        −0.48039x^2 0.7506x 3.420375

        Hyvin lähellä muuten lukua -2 tuon toinen juuri, mutta ei kuitenkaan ihan (niillä tarkkuuksilla millä sain ratkaisun). Liekkö vain hauska sattuma?


    • Anonyymi

      Otetaan akseleiden leikkaus-koordinaatit muuttujiksi ja ratkaistaan ratkaistaan kertoimet (Lagrangen interpolaatiolla saadaan 2. asteen polynomi, joka kulkee kolmen annetun pisteen kautta.) Ratkaistaan sitten optimiarvo numeerisesti.

      https://www.desmos.com/calculator/x6unx8udkv

      Voisihan sitä ottaa polynomin kertoimet muuttujiksi ja sitten kirjoittaa ehdot rajoituksiksi. Tai jos ottaisi x-leikkauksen yhdeksi muuttujaksi ja sitten loput kertoimet eli f olisi muotoa (x-x1)*(c_{n-1}x^(n-1) ... c0), niin ainakin se vaadittu nollakohta > a löytyisi (kun lisää x1:lle ehdon x1>a). Kun minä Sagella tuota numeerista optimointia tein, niin jotenkin se minimize_constrained() -funktio ei aina kunnioita niitä annettuja ehtoja, vaan antaa joskus ratkaisun myös kielletyltä alueelta. Noh, tuossa minä tein niin, että etsitään sitä nollakohtaa ja jos sitä ei löydy, niin otetaan vaan joku suuri luku, jota käytetään integroinnissa, niin sen pitäisi kyllä rajoittaa menemistä rajoitetulle alueelle

      https://www.desmos.com/calculator/dl0kjts89b

      Tuo oli siis yleisemmälle kolmannen jne. asteen. (Mutta tässä en ole varma onko suuremmille löydetty optimi enää globaali minimi, sillä se tuntui vaihtelevan kun kokeili satunnaisia lähtöarvoja).
      Paraabelin kaaren pituudellehan saa myös analyyttisen kaavan hyperbelisen arkussinin avulla, mutta en tiedä onko siitä paljon apua, koska kaavasta tulee kuitenkin hyvin monimutkainen, niin en tiedä onko sen analyyttiseen ratkaisemiseen toivoa. Tässä kuitenkin vielä toinen versio, jossa kiinnitetylle x1:n arvolle minimointi y1:n suhteen tehty, niin minimin voi sitten itse etsiä vain vetämällä x1:stä itse oikeaan kohtaan Desmoksessa:

      https://www.desmos.com/calculator/yrn6m4siq8

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Aivosyöpää sairastava Olga Temonen TV:ssä - Viimeinen Perjantai-keskusteluohjelma ulos

      Näyttelijä-yrittäjä Olga Temonen sairastaa neljännen asteen glioomaa eli aivosyöpää, jota ei ole mahdollista leikata. Hä
      Maailman menoa
      88
      2871
    2. Pelotelkaa niin paljon kuin sielu sietää.

      Mutta ei mene perille asti. Miksi Venäjä hyökkäisi Suomeen? No, tottahan se tietenkin on jos Suomi joka ei ole edes soda
      Maailman menoa
      299
      1666
    3. Mikä saa ihmisen tekemään tällaista?

      Onko se huomatuksi tulemisen tarve tosiaan niin iso tarve, että nuoruuttaan ja tietämättömyyttään pilataan loppuelämä?
      Sinkut
      246
      1547
    4. Minkä merkkisellä

      Autolla kaivattusi ajaa? Mies jota kaipaan ajaa Mersulla.
      Ikävä
      87
      1381
    5. IL - VARUSMIEHIÄ lähetetään jatkossa NATO-tehtäviin ulkomaille!

      Suomen puolustuksen uudet linjaukset: Varusmiehiä suunnitellaan Nato-tehtäviin Puolustusministeri Antti Häkkänen esittel
      Maailman menoa
      402
      1364
    6. Nyt kun Pride on ohi 3.0

      Edelliset kaksi ketjua tuli täyteen. Pidetään siis edelleen tämä asia esillä. Raamattu opettaa johdonmukaisesti, että
      Luterilaisuus
      398
      1292
    7. Kiitos nainen

      Kuitenkin. Olet sitten ajanmerkkinä. Tuskin enää sinua näen ja huomasitko, että olit siinä viimeisen kerran samassa paik
      Tunteet
      2
      1069
    8. Esko Eerikäinen tatuoi kasvoihinsa rakkaan nimen - Kärkäs kommentti "Ritvasta" lävähti somessa

      Ohhoh! Esko Eerikäinen on ottanut uuden tatuoinnin. Kyseessä ei ole mikä tahansa kuva minne tahansa, vaan Eerikäisen tat
      Suomalaiset julkkikset
      38
      1027
    9. Hyväksytkö sinä sen että päättäjämme ei rakenna rauhaa Venäjän kanssa?

      Vielä kun sota ehkäpä voitaisiin välttää rauhanponnisteluilla niin millä verukkeella voidaan sanoa että on hyvä asia kun
      Maailman menoa
      329
      864
    10. Miksi Purra-graffiti ei nyt olekkaan naisvihaa?

      "Pohtikaapa reaktiota, jos vastaava graffiti olisi tehty Sanna Marinista", kysyy Tere Sammallahti. Helsingin Suvilahden
      Maailman menoa
      257
      845
    Aihe