Toiseen asteen tikkaat

Anonyymi

Otetaanpas uusi versio vajatehtävästä, jossa tikkaat ovat paraabelin muotoiset. Tikkaat täytyy siis asettaa nojaamaan (korkean) seinän vieressä olevaa vajaa (leveys: a korkeus: b) vasten siten, että tikkaat lähtevät maasta ja päätyvät seinää vasten.
Mitkä ovat lyhyimmät mahdolliset tällaiset paraabelitikkaat?
Ei huomioida sitä kestäisivätkö tikkaat itsestään pystyssä vai ei. Ajatellaan vaikka että ne on kiinnitetty seinään.

Tässä vielä havainnollistava kuva: https://aijaa.com/78oUCG

Kysytään ratkaisuja seuraaville tapauksille
a = 2, b = 3
a = 27/10, b = 187/40
a = 1,529; b = 1,0515

10

68

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Paraabelin huippumuodosta pääsin tulokseen, että paraabeli leikkaisi x-akselin kohdassa x=2*(huipun x-koordinaatti), mutta sitten ei enää etene, tulee epämääräisiä tuloksia...

    • Anonyymi

      Onko tehtävänannossa sanottu, että paraabelin tulee olla (maanpinnan suuntaisen) x-muuttujan funktio? Tuossa esittämässäsi muodossa oikean vastauksen keksiminen on vähän työläämpää, koska paraabeli voisi aueta myös mihin tahansa muuhun suuntaan kuin alaspäin.

      • Anonyymi

        Joo, oletetaan funktioksi f(x) = ax^2 bx c. Mutta tuo yleisempi muoto (tai vaikka sallittaisiin mikä tahansa kartioleikkaus) voisi olla myöskin kiinnostava variaatio.


      • Anonyymi
        Anonyymi kirjoitti:

        Joo, oletetaan funktioksi f(x) = ax^2 bx c. Mutta tuo yleisempi muoto (tai vaikka sallittaisiin mikä tahansa kartioleikkaus) voisi olla myöskin kiinnostava variaatio.

        Ai niin a ja b oli jo käytössä, nuo kertoimet ei samat a ja b.


    • Anonyymi

      Mitä kauempaa paraabelin huipusta ko. paraabelinpalanen leikataan, sitä lyhyempi se on. Eli kun mennään yhä kauemmas huipusta, paraabelin muoto lähenee suoraa.

    • Anonyymi

      y=Ax^2 Bx C
      Pitäisköhän tossa vaan antaa C:lle arvoja 3,3.1,3.2,...jne, ja laskea B tiedosta (2,3), sekä paraabelin ja x-akselin lp, joka sekin sisältää A:n.
      Sitten pituuden integrointi, ja A:n suhteen derivointi ja löytyy(vitsi) lyhimmät tikkaat kun C=3
      Sitten uusi C=3.1, ja verrataan tuloksia.... Käsipelillä ei onnistu.

      • Anonyymi

        Joo, ei se mene ihan noin suoraviivaisesti. Siitä derivaatan 0-kohdasta ei ole apua, vaan jos se paraabelin ja x-akselin leikkauskohta on A:n funktio, niin sen derivaatan epäjatkuvuuskohdasta päästään eteenpäin, ja siinäkin täytyy sitten jostain syystä vaihtaa etumerkkejä.
        Kaksi paraabelin yhtälöä laskin:
        y=-3x^2 6x 3
        y=-3.7458x^2 7.2416x 3.5

        Pituuksia en enää jaksa laskea, enkä tätä enää muutenkaan..


      • Anonyymi
        Anonyymi kirjoitti:

        Joo, ei se mene ihan noin suoraviivaisesti. Siitä derivaatan 0-kohdasta ei ole apua, vaan jos se paraabelin ja x-akselin leikkauskohta on A:n funktio, niin sen derivaatan epäjatkuvuuskohdasta päästään eteenpäin, ja siinäkin täytyy sitten jostain syystä vaihtaa etumerkkejä.
        Kaksi paraabelin yhtälöä laskin:
        y=-3x^2 6x 3
        y=-3.7458x^2 7.2416x 3.5

        Pituuksia en enää jaksa laskea, enkä tätä enää muutenkaan..

        yhden vielä laskin: y=-4.37x^2 7.24x 6
        kuvista näyttäis, että tuo C=3 paraabelin kaari olis lyhin, pitäis laskee, mutta hankala integrointi...


      • Anonyymi

        Minä sain optimaaliseksi paraabeliksi

        −0.48039x^2 0.7506x 3.420375

        Hyvin lähellä muuten lukua -2 tuon toinen juuri, mutta ei kuitenkaan ihan (niillä tarkkuuksilla millä sain ratkaisun). Liekkö vain hauska sattuma?


    • Anonyymi

      Otetaan akseleiden leikkaus-koordinaatit muuttujiksi ja ratkaistaan ratkaistaan kertoimet (Lagrangen interpolaatiolla saadaan 2. asteen polynomi, joka kulkee kolmen annetun pisteen kautta.) Ratkaistaan sitten optimiarvo numeerisesti.

      https://www.desmos.com/calculator/x6unx8udkv

      Voisihan sitä ottaa polynomin kertoimet muuttujiksi ja sitten kirjoittaa ehdot rajoituksiksi. Tai jos ottaisi x-leikkauksen yhdeksi muuttujaksi ja sitten loput kertoimet eli f olisi muotoa (x-x1)*(c_{n-1}x^(n-1) ... c0), niin ainakin se vaadittu nollakohta > a löytyisi (kun lisää x1:lle ehdon x1>a). Kun minä Sagella tuota numeerista optimointia tein, niin jotenkin se minimize_constrained() -funktio ei aina kunnioita niitä annettuja ehtoja, vaan antaa joskus ratkaisun myös kielletyltä alueelta. Noh, tuossa minä tein niin, että etsitään sitä nollakohtaa ja jos sitä ei löydy, niin otetaan vaan joku suuri luku, jota käytetään integroinnissa, niin sen pitäisi kyllä rajoittaa menemistä rajoitetulle alueelle

      https://www.desmos.com/calculator/dl0kjts89b

      Tuo oli siis yleisemmälle kolmannen jne. asteen. (Mutta tässä en ole varma onko suuremmille löydetty optimi enää globaali minimi, sillä se tuntui vaihtelevan kun kokeili satunnaisia lähtöarvoja).
      Paraabelin kaaren pituudellehan saa myös analyyttisen kaavan hyperbelisen arkussinin avulla, mutta en tiedä onko siitä paljon apua, koska kaavasta tulee kuitenkin hyvin monimutkainen, niin en tiedä onko sen analyyttiseen ratkaisemiseen toivoa. Tässä kuitenkin vielä toinen versio, jossa kiinnitetylle x1:n arvolle minimointi y1:n suhteen tehty, niin minimin voi sitten itse etsiä vain vetämällä x1:stä itse oikeaan kohtaan Desmoksessa:

      https://www.desmos.com/calculator/yrn6m4siq8

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Maatalous- ja yritystuet pois, työeläkevaroilla valtion velka pois

      Suomi saadaan eheytettyä kädenkäänteessä, kun uskalletaan tehdä rohkeita ratkaisuja. Maatalous- ja yritystuet ovat hait
      Maailman menoa
      80
      3422
    2. Hei! Halusin vain kertoa.

      En tiedä luetko näitä, mutta näimme n.4vk sitten, vaihdoimme muutaman sanan ja tunsin edelleen kipinän välillämme. Katso
      Tunteet
      4
      1344
    3. Miksi ikävä ei helpotu vuosien jälkeenkään?

      Tänään olin ensimmäistä kertaa sinun lähtösi jälkeen tilassa, jossa vuosia sitten nähtiin ensimmäistä kerta. Ollessani
      Rakkaus ja rakastaminen
      4
      1111
    4. Teboili alasajo on alkanut

      Niinhän siinä kävi että teebboili loppuu...
      Suomussalmi
      26
      1086
    5. Kirjoittaisit edes jotain josta tiedän

      Varmasti oletko se oikeasti sinä. Tänään tälläinen olo. 🫩
      Ikävä
      68
      820
    6. Tiesitkö? Suomessa lääkäri voi toimia ammatissaan, vaikka hän olisi seksuaalirikollinen

      Järkyttävää… Motin mukaan Suomessa lääkäri voi toimia ammatissaan, vaikka hän olisi yksityiselämässään syyllistynyt es
      Maailman menoa
      45
      778
    7. Mistä tietää, onko hän se oikea?

      Siitä, kun sitä ei tarvitse miettiä. Siitä, kun hänen olemassa oleminen ja ajatteleminen saa hymyilemään. Siitä, kun ha
      Ikävä
      60
      744
    8. Miten voitkin olla aina niin fiksu

      ...aina niin huomaavainen, kärryillä ja kartalla. Yritän etsimällä etsiä sinusta jotain vikaa, että saisin pidettyä sydä
      Ikävä
      45
      739
    9. Oot kyl rakas

      Et tiiäkkään miten suuri vaikutus sulla on mun jaksamiseen niin töissä, kun vapaallakin❤️. Oot täysin korvaamaton. En t
      Ikävä
      29
      703
    10. Sofia Zida puhuu rehellisesti suhteesta Andy McCoyhin: "Se on ollut mulle tavallaan..."

      Sofia ja Andy, aika hellyttävä parivaljakko. Sofia Zida on mukana Petolliset-sarjassa. Hänet nähtiin Yökylässä Maria Ve
      Suomalaiset julkkikset
      4
      687
    Aihe