Toiseen asteen tikkaat

Anonyymi

Otetaanpas uusi versio vajatehtävästä, jossa tikkaat ovat paraabelin muotoiset. Tikkaat täytyy siis asettaa nojaamaan (korkean) seinän vieressä olevaa vajaa (leveys: a korkeus: b) vasten siten, että tikkaat lähtevät maasta ja päätyvät seinää vasten.
Mitkä ovat lyhyimmät mahdolliset tällaiset paraabelitikkaat?
Ei huomioida sitä kestäisivätkö tikkaat itsestään pystyssä vai ei. Ajatellaan vaikka että ne on kiinnitetty seinään.

Tässä vielä havainnollistava kuva: https://aijaa.com/78oUCG

Kysytään ratkaisuja seuraaville tapauksille
a = 2, b = 3
a = 27/10, b = 187/40
a = 1,529; b = 1,0515

10

<50

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Paraabelin huippumuodosta pääsin tulokseen, että paraabeli leikkaisi x-akselin kohdassa x=2*(huipun x-koordinaatti), mutta sitten ei enää etene, tulee epämääräisiä tuloksia...

    • Anonyymi

      Onko tehtävänannossa sanottu, että paraabelin tulee olla (maanpinnan suuntaisen) x-muuttujan funktio? Tuossa esittämässäsi muodossa oikean vastauksen keksiminen on vähän työläämpää, koska paraabeli voisi aueta myös mihin tahansa muuhun suuntaan kuin alaspäin.

      • Anonyymi

        Joo, oletetaan funktioksi f(x) = ax^2 bx c. Mutta tuo yleisempi muoto (tai vaikka sallittaisiin mikä tahansa kartioleikkaus) voisi olla myöskin kiinnostava variaatio.


      • Anonyymi
        Anonyymi kirjoitti:

        Joo, oletetaan funktioksi f(x) = ax^2 bx c. Mutta tuo yleisempi muoto (tai vaikka sallittaisiin mikä tahansa kartioleikkaus) voisi olla myöskin kiinnostava variaatio.

        Ai niin a ja b oli jo käytössä, nuo kertoimet ei samat a ja b.


    • Anonyymi

      Mitä kauempaa paraabelin huipusta ko. paraabelinpalanen leikataan, sitä lyhyempi se on. Eli kun mennään yhä kauemmas huipusta, paraabelin muoto lähenee suoraa.

    • Anonyymi

      y=Ax^2 Bx C
      Pitäisköhän tossa vaan antaa C:lle arvoja 3,3.1,3.2,...jne, ja laskea B tiedosta (2,3), sekä paraabelin ja x-akselin lp, joka sekin sisältää A:n.
      Sitten pituuden integrointi, ja A:n suhteen derivointi ja löytyy(vitsi) lyhimmät tikkaat kun C=3
      Sitten uusi C=3.1, ja verrataan tuloksia.... Käsipelillä ei onnistu.

      • Anonyymi

        Joo, ei se mene ihan noin suoraviivaisesti. Siitä derivaatan 0-kohdasta ei ole apua, vaan jos se paraabelin ja x-akselin leikkauskohta on A:n funktio, niin sen derivaatan epäjatkuvuuskohdasta päästään eteenpäin, ja siinäkin täytyy sitten jostain syystä vaihtaa etumerkkejä.
        Kaksi paraabelin yhtälöä laskin:
        y=-3x^2 6x 3
        y=-3.7458x^2 7.2416x 3.5

        Pituuksia en enää jaksa laskea, enkä tätä enää muutenkaan..


      • Anonyymi
        Anonyymi kirjoitti:

        Joo, ei se mene ihan noin suoraviivaisesti. Siitä derivaatan 0-kohdasta ei ole apua, vaan jos se paraabelin ja x-akselin leikkauskohta on A:n funktio, niin sen derivaatan epäjatkuvuuskohdasta päästään eteenpäin, ja siinäkin täytyy sitten jostain syystä vaihtaa etumerkkejä.
        Kaksi paraabelin yhtälöä laskin:
        y=-3x^2 6x 3
        y=-3.7458x^2 7.2416x 3.5

        Pituuksia en enää jaksa laskea, enkä tätä enää muutenkaan..

        yhden vielä laskin: y=-4.37x^2 7.24x 6
        kuvista näyttäis, että tuo C=3 paraabelin kaari olis lyhin, pitäis laskee, mutta hankala integrointi...


      • Anonyymi

        Minä sain optimaaliseksi paraabeliksi

        −0.48039x^2 0.7506x 3.420375

        Hyvin lähellä muuten lukua -2 tuon toinen juuri, mutta ei kuitenkaan ihan (niillä tarkkuuksilla millä sain ratkaisun). Liekkö vain hauska sattuma?


    • Anonyymi

      Otetaan akseleiden leikkaus-koordinaatit muuttujiksi ja ratkaistaan ratkaistaan kertoimet (Lagrangen interpolaatiolla saadaan 2. asteen polynomi, joka kulkee kolmen annetun pisteen kautta.) Ratkaistaan sitten optimiarvo numeerisesti.

      https://www.desmos.com/calculator/x6unx8udkv

      Voisihan sitä ottaa polynomin kertoimet muuttujiksi ja sitten kirjoittaa ehdot rajoituksiksi. Tai jos ottaisi x-leikkauksen yhdeksi muuttujaksi ja sitten loput kertoimet eli f olisi muotoa (x-x1)*(c_{n-1}x^(n-1) ... c0), niin ainakin se vaadittu nollakohta > a löytyisi (kun lisää x1:lle ehdon x1>a). Kun minä Sagella tuota numeerista optimointia tein, niin jotenkin se minimize_constrained() -funktio ei aina kunnioita niitä annettuja ehtoja, vaan antaa joskus ratkaisun myös kielletyltä alueelta. Noh, tuossa minä tein niin, että etsitään sitä nollakohtaa ja jos sitä ei löydy, niin otetaan vaan joku suuri luku, jota käytetään integroinnissa, niin sen pitäisi kyllä rajoittaa menemistä rajoitetulle alueelle

      https://www.desmos.com/calculator/dl0kjts89b

      Tuo oli siis yleisemmälle kolmannen jne. asteen. (Mutta tässä en ole varma onko suuremmille löydetty optimi enää globaali minimi, sillä se tuntui vaihtelevan kun kokeili satunnaisia lähtöarvoja).
      Paraabelin kaaren pituudellehan saa myös analyyttisen kaavan hyperbelisen arkussinin avulla, mutta en tiedä onko siitä paljon apua, koska kaavasta tulee kuitenkin hyvin monimutkainen, niin en tiedä onko sen analyyttiseen ratkaisemiseen toivoa. Tässä kuitenkin vielä toinen versio, jossa kiinnitetylle x1:n arvolle minimointi y1:n suhteen tehty, niin minimin voi sitten itse etsiä vain vetämällä x1:stä itse oikeaan kohtaan Desmoksessa:

      https://www.desmos.com/calculator/yrn6m4siq8

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Mitä siellä ABC on tapahtunut

      Tavallista isompi operaatio näkyy olevan kyseessä.
      Alajärvi
      161
      6462
    2. Kuvaile elämäsi naista

      Millainen hän on? Mikä tekee hänestä sinulle erityisen?
      Ikävä
      52
      1872
    3. Klaukkalan onnettomuus 4.4

      Klaukkalassa oli tänään se kolmen nuoren naisen onnettomuus, onko kellään mitään tietoa mitä kävi tai ketä onnettomuudes
      Nurmijärvi
      44
      1600
    4. Kuvaile elämäsi miestä

      Millainen hän on? Mikä tekee hänestä sinulle erityisen?
      Ikävä
      54
      1132
    5. Ukraina ja Zelenskyn ylläpitämä sota tuhoaa Euroopan, ei Venäjä

      Mutta tätä ei YLE eikä Helsingin Sanomat kerto.
      Maailman menoa
      327
      1059
    6. Kolari Klaukkala

      Kaksi teinityttö kuoli. Vastaantulijoille ei käynyt mitenkään. Mikä auto ja malli telineillä oli entä se toinen auto? Se
      Nurmijärvi
      49
      999
    7. Ooo! Kaija Koo saa kesämökille öky-rempan:jättimäinen terde, poreallas... Katso ennen-jälkeen kuvat!

      Wow, nyt on Kaija Koon mökkipihalla kyllä iso muutos! Miltä näyttää, haluaisitko omalle mökillesi vaikkapa samanlaisen l
      Kesämökki
      13
      960
    8. Olisinpa jo siellä, otatkohan minut vastaan

      Olisitpa lähelläni ja antaisit minun maalata sinulle kuvaa siitä kaikesta ikävästä, tuskasta, epävarmuudesta ja mieleni
      Ikävä
      79
      908
    9. Kevyt on olo

      Tiedättekö, että olo kevenee kummasti, kun päästää turhista asioista tai ihmisistä irti! Tämä on hyvä näin <3
      Ikävä
      84
      908
    10. Toivoisin, että lähentyisit kanssani

      Tänään koin, että välillämme oli enemmän. Kummatkin katsoivat pidempään kuin tavallisesti toista silmiin. En tiedä mistä
      Ikävä
      14
      897
    Aihe