Otetaanpas uusi versio vajatehtävästä, jossa tikkaat ovat paraabelin muotoiset. Tikkaat täytyy siis asettaa nojaamaan (korkean) seinän vieressä olevaa vajaa (leveys: a korkeus: b) vasten siten, että tikkaat lähtevät maasta ja päätyvät seinää vasten.
Mitkä ovat lyhyimmät mahdolliset tällaiset paraabelitikkaat?
Ei huomioida sitä kestäisivätkö tikkaat itsestään pystyssä vai ei. Ajatellaan vaikka että ne on kiinnitetty seinään.
Tässä vielä havainnollistava kuva: https://aijaa.com/78oUCG
Kysytään ratkaisuja seuraaville tapauksille
a = 2, b = 3
a = 27/10, b = 187/40
a = 1,529; b = 1,0515
Toiseen asteen tikkaat
10
70
Vastaukset
- Anonyymi
Paraabelin huippumuodosta pääsin tulokseen, että paraabeli leikkaisi x-akselin kohdassa x=2*(huipun x-koordinaatti), mutta sitten ei enää etene, tulee epämääräisiä tuloksia...
- Anonyymi
Onko tehtävänannossa sanottu, että paraabelin tulee olla (maanpinnan suuntaisen) x-muuttujan funktio? Tuossa esittämässäsi muodossa oikean vastauksen keksiminen on vähän työläämpää, koska paraabeli voisi aueta myös mihin tahansa muuhun suuntaan kuin alaspäin.
- Anonyymi
Joo, oletetaan funktioksi f(x) = ax^2 bx c. Mutta tuo yleisempi muoto (tai vaikka sallittaisiin mikä tahansa kartioleikkaus) voisi olla myöskin kiinnostava variaatio.
- Anonyymi
Anonyymi kirjoitti:
Joo, oletetaan funktioksi f(x) = ax^2 bx c. Mutta tuo yleisempi muoto (tai vaikka sallittaisiin mikä tahansa kartioleikkaus) voisi olla myöskin kiinnostava variaatio.
Ai niin a ja b oli jo käytössä, nuo kertoimet ei samat a ja b.
- Anonyymi
Mitä kauempaa paraabelin huipusta ko. paraabelinpalanen leikataan, sitä lyhyempi se on. Eli kun mennään yhä kauemmas huipusta, paraabelin muoto lähenee suoraa.
- Anonyymi
y=Ax^2 Bx C
Pitäisköhän tossa vaan antaa C:lle arvoja 3,3.1,3.2,...jne, ja laskea B tiedosta (2,3), sekä paraabelin ja x-akselin lp, joka sekin sisältää A:n.
Sitten pituuden integrointi, ja A:n suhteen derivointi ja löytyy(vitsi) lyhimmät tikkaat kun C=3
Sitten uusi C=3.1, ja verrataan tuloksia.... Käsipelillä ei onnistu.- Anonyymi
Joo, ei se mene ihan noin suoraviivaisesti. Siitä derivaatan 0-kohdasta ei ole apua, vaan jos se paraabelin ja x-akselin leikkauskohta on A:n funktio, niin sen derivaatan epäjatkuvuuskohdasta päästään eteenpäin, ja siinäkin täytyy sitten jostain syystä vaihtaa etumerkkejä.
Kaksi paraabelin yhtälöä laskin:
y=-3x^2 6x 3
y=-3.7458x^2 7.2416x 3.5
Pituuksia en enää jaksa laskea, enkä tätä enää muutenkaan.. - Anonyymi
Anonyymi kirjoitti:
Joo, ei se mene ihan noin suoraviivaisesti. Siitä derivaatan 0-kohdasta ei ole apua, vaan jos se paraabelin ja x-akselin leikkauskohta on A:n funktio, niin sen derivaatan epäjatkuvuuskohdasta päästään eteenpäin, ja siinäkin täytyy sitten jostain syystä vaihtaa etumerkkejä.
Kaksi paraabelin yhtälöä laskin:
y=-3x^2 6x 3
y=-3.7458x^2 7.2416x 3.5
Pituuksia en enää jaksa laskea, enkä tätä enää muutenkaan..yhden vielä laskin: y=-4.37x^2 7.24x 6
kuvista näyttäis, että tuo C=3 paraabelin kaari olis lyhin, pitäis laskee, mutta hankala integrointi... - Anonyymi
Minä sain optimaaliseksi paraabeliksi
−0.48039x^2 0.7506x 3.420375
Hyvin lähellä muuten lukua -2 tuon toinen juuri, mutta ei kuitenkaan ihan (niillä tarkkuuksilla millä sain ratkaisun). Liekkö vain hauska sattuma?
- Anonyymi
Otetaan akseleiden leikkaus-koordinaatit muuttujiksi ja ratkaistaan ratkaistaan kertoimet (Lagrangen interpolaatiolla saadaan 2. asteen polynomi, joka kulkee kolmen annetun pisteen kautta.) Ratkaistaan sitten optimiarvo numeerisesti.
https://www.desmos.com/calculator/x6unx8udkv
Voisihan sitä ottaa polynomin kertoimet muuttujiksi ja sitten kirjoittaa ehdot rajoituksiksi. Tai jos ottaisi x-leikkauksen yhdeksi muuttujaksi ja sitten loput kertoimet eli f olisi muotoa (x-x1)*(c_{n-1}x^(n-1) ... c0), niin ainakin se vaadittu nollakohta > a löytyisi (kun lisää x1:lle ehdon x1>a). Kun minä Sagella tuota numeerista optimointia tein, niin jotenkin se minimize_constrained() -funktio ei aina kunnioita niitä annettuja ehtoja, vaan antaa joskus ratkaisun myös kielletyltä alueelta. Noh, tuossa minä tein niin, että etsitään sitä nollakohtaa ja jos sitä ei löydy, niin otetaan vaan joku suuri luku, jota käytetään integroinnissa, niin sen pitäisi kyllä rajoittaa menemistä rajoitetulle alueelle
https://www.desmos.com/calculator/dl0kjts89b
Tuo oli siis yleisemmälle kolmannen jne. asteen. (Mutta tässä en ole varma onko suuremmille löydetty optimi enää globaali minimi, sillä se tuntui vaihtelevan kun kokeili satunnaisia lähtöarvoja).
Paraabelin kaaren pituudellehan saa myös analyyttisen kaavan hyperbelisen arkussinin avulla, mutta en tiedä onko siitä paljon apua, koska kaavasta tulee kuitenkin hyvin monimutkainen, niin en tiedä onko sen analyyttiseen ratkaisemiseen toivoa. Tässä kuitenkin vielä toinen versio, jossa kiinnitetylle x1:n arvolle minimointi y1:n suhteen tehty, niin minimin voi sitten itse etsiä vain vetämällä x1:stä itse oikeaan kohtaan Desmoksessa:
https://www.desmos.com/calculator/yrn6m4siq8
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Nyt se on selvitetty: Sanna Marinin hallitus lisäsi menoja 41 miljardilla
”vasemmistohallitus oli katastrofaalisen huono”, sanoo kokoomus. Sanna Marinin (sd.) hallituksen tekemät menolisäykset27217604Purra sössi kaiken 2 vuodessa, itkee nyt Marinin perään
Nyt on taas sama vanha itkuvirsi, kun ei omat taidot riittänee. Kaikki on taas muiden syytä. No miten sen "Tunnin juna"19212512Eli persujen rääkyminen Marinin hallituksen velanotosta oli sitä itseään
"Valtiovarainministeriön mukaan Marinin hallitus lisäsi valtion pysyviä menoja 3 miljardia eikä 11 miljardia euroa." El736232MTV3 - Auerin poika todistaa videolla, miten Anneli pahoinpiteli lapsia!
Kello 10.04 – Ainakin kerran viikossa se löi. Löi muitakin sisaruksia, mutta ei isosiskoa. Nuorinta siskoa en ole nähny355183Orpon hallitus runnoi Tunnin junan ilman tarvetta
Näinkö valtiontaloutta hoidetaan? Siis asiantuntijoidenkin aikoja sitten kannattamattomaksi laskema Tunnin juna tehdään775058Orpon hallitus paskoi kaikki hommat
ja "yllätäen" ilmestyi raportti Marinin hallituksen tuhlailusta, raportti tuli kuin TILAUKSESTA.584196NO NIIN! Nyt on sitten prinsessa Sannan sädekehä lopullisesti rikottu
narsistia ei kannata enää kuin ne fanaattisimmat kulttilaiset, jotka ovat myös sitä Suomen heikkoälyisintä sakkia. Kun694022Kansa haluaa Marinin hallituksen takaisin ja Orpon pois
Suomen kansa on nyt ilmoittanut millaisen hallituksen Suomi tarvitsee. "Suomalaisten suosikki seuraavaksi hallituspohja573792Lindtman ylivoimainen suosikki pääministeriksi
Lindtmania kannattaa pääministeriksi peräti 50 prosenttia useampi kuin toiseksi suosituinta Kaikkosta. https://www.ilta1003712Sanna Marin - Maailman paras talousasiantuntija?
PersKeKoa pukkaa? https://www.hs.fi/politiikka/art-2000011636623.html1463179