Eräästä luvusta muodostetaan uusi luku vaihtamalla numeroiden järjestys. Tämä saatu luku vähennetään alkuperäisestä luvusta. Miten osoitetaan, että luku on jaollinen luvulla 9?
9:llä jaollisuus
5
97
Vastaukset
- Anonyymi
Jakamalla saau luku tekijöihin.
- Anonyymi
Vinkki: 10 ≡ 1 (mod 9)
- Anonyymi
Kaikkihan tietävät ysin jaollisuussäännön: jos numeroiden summa on jaollinen ysillä, niin myös luku on. Mennäänpä sisään sen todistukseen ja tarkastellaan mitä siinä tapahtuu. Siinähän osoitetaan jopa, että luvun ja sen numeroiden summa ovat yhtä suuret modulo 9. (Ysillä jaollisuus on tämän erikoitapaus, jossa molemmat ovat 0 mod 9.) Itse todistus on lyhykäisyydessään se, että kympin potenssit, jotka ovat luvun numeroiden kertoimina voidaan unohtaa, koska 10^n on konguentti 1 mod 9.
No, nyt kun luvun numeroita sekoitetaan, niin niiden summa ei tietenkään muutu. Näin ei muutu myöskään luvun jäännösluokka mod 9, sillä edellisen huomion mukaan se on sama kuin luvun numeroiden summa. Siis kun vähennämme nämä kaksi sama jäännösluokkaista toisistaan, päädymme jäännösluokkaan 0 eli ysillä jaolliseen lukuun. - Anonyymi
Aloituksessa puhutaan eräästä luvusta, joten yleispätevää todistusta ei tässä tarvita, vaikka sekin käy.
- Anonyymi
A = B (C) kun C l A - B (luku C jakaa luvun A - B)
Olkoon meillä kokonaisluku A = a(n)*10^n a(n-1)*10^(n-1) ... a(1) * 10 a(0).
a(n)* 10^n = a(n) (9) (luku a(n) * 10^n on kongruentti luvun a(n) kanssa modulo 9).
a(n-1) * 10^(n-1) = a(n-1) (9)
.
.
.a(1)*10^1 = a(1) (9)
a(0) = a(0) (9)
Kongruenssit saa laskea yhteen jolloin saadaan
A = (a(n) a(n-1) ... a(0)) (9).
Olkoon a = a(n) a(n-1) ... a(1) a(0)
Jos meillä nyt on toinen luku B = b(k) 10^k ... b(1) * 10 b(0)
jonka numeroiden summa b = b(k) ... b(0) = a(n) ... a(0) = a
niin B = a (9)
Kongruenssit voi myös vähentää toisistaan joten siis
A-B = 0 (9) eli 9 l A-B
Aloittajan esimerkissä permutoitiin luvun numeroita jolloin numeroiden summa säilyi. Mutta tulos on siis yleisempi, riittää kun annettujen lukujen numeroiden summat ovat samat. Esim. 17 = 8 (9).
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Aivosyöpää sairastava Olga Temonen TV:ssä - Viimeinen Perjantai-keskusteluohjelma ulos
Näyttelijä-yrittäjä Olga Temonen sairastaa neljännen asteen glioomaa eli aivosyöpää, jota ei ole mahdollista leikata. Hä802799Pelotelkaa niin paljon kuin sielu sietää.
Mutta ei mene perille asti. Miksi Venäjä hyökkäisi Suomeen? No, tottahan se tietenkin on jos Suomi joka ei ole edes soda2931610Mikä saa ihmisen tekemään tällaista?
Onko se huomatuksi tulemisen tarve tosiaan niin iso tarve, että nuoruuttaan ja tietämättömyyttään pilataan loppuelämä?2461517- 871361
IL - VARUSMIEHIÄ lähetetään jatkossa NATO-tehtäviin ulkomaille!
Suomen puolustuksen uudet linjaukset: Varusmiehiä suunnitellaan Nato-tehtäviin Puolustusministeri Antti Häkkänen esittel4011339Nyt kun Pride on ohi 3.0
Edelliset kaksi ketjua tuli täyteen. Pidetään siis edelleen tämä asia esillä. Raamattu opettaa johdonmukaisesti, että3961273Esko Eerikäinen tatuoi kasvoihinsa rakkaan nimen - Kärkäs kommentti "Ritvasta" lävähti somessa
Ohhoh! Esko Eerikäinen on ottanut uuden tatuoinnin. Kyseessä ei ole mikä tahansa kuva minne tahansa, vaan Eerikäisen tat381017Kiitos nainen
Kuitenkin. Olet sitten ajanmerkkinä. Tuskin enää sinua näen ja huomasitko, että olit siinä viimeisen kerran samassa paik2979Hyväksytkö sinä sen että päättäjämme ei rakenna rauhaa Venäjän kanssa?
Vielä kun sota ehkäpä voitaisiin välttää rauhanponnisteluilla niin millä verukkeella voidaan sanoa että on hyvä asia kun329854Miksi Purra-graffiti ei nyt olekkaan naisvihaa?
"Pohtikaapa reaktiota, jos vastaava graffiti olisi tehty Sanna Marinista", kysyy Tere Sammallahti. Helsingin Suvilahden254832