Koordinaatteja merkitään xi:llä missä yläindeksi i viittaa koordinaatin järjestysnumeroon. Mutta yläindeksillä merkitään myös kontravariantteja kantavektoreita Ei ja kontravariantteja vektorin komponentteja ai, joten tulee mieleen, tarkoittaako koordinaatin merkintä xi (missä i on yläindeksi) kontravarianttia koordinaattia? En tosin ole koskaan kuullut, että koordinaatit voisivat olla ko- tai kontravariantteja. Ja jos on pakko käyttää koordinaatin järjestysnumeroa, täytyy se merkitä johonkin, ylä- tai alaindeksiksi (olisi tosin muitakin mahdollisia merkintätapoja). Mutta miten on, onko olemassa ko- ja kontravariantteja koordinaatteja?
Kontravariantti koordinaatti?
4
352
Vastaukset
- Anonyymi
Kontravariantti merkintä ilmaisee koordinaatin järjestysnumeron kantavektorin suhteen joko ylä- tai alaindeksin suhteen. Molemmat mahdollisia. Vektorin ko- ja kontravariantti komponentti ovat toistensa vastavektoreita, jolloin vektoria xi voidaan pitää merkityksemättömänä. Molempia koordinaatteja siis on olemassa. Kontravariantit koordinaatit ilmaisevat järjestysnumeron, ko-variantit kantavektorin ala- taikka yläindeksin. Vektorin yläindeksi voidaan myös muuntaa alaindekseksi käyttäen kontravarianttia järjestysnumeroa.
- Anonyymi
Tavallisessa vektorialgebrassa on vain yhdenlaisia koordinaatteja joilla on tietysti eri arvoja eri koordinaatistoissa. Sillä, missä kohtaa koordinaatin järjestysnumero sijaitsee, ei ole merkitystä. Koordinaatin indeksin arvo kertoo, mihin kantavektoriin tuo koordinaatti liittyy. Voi kirjottaa jopa näin:
X = ( x(1), x(2),...,x(n) ).
Jos mennään tensorilaskennan puolelle niin tensorien komponentit ovat tosiaan kovariantteja tai kontravariantteja. Tämä ilmaistaan alaindeksillä tai yläindeksillä. Indeksin arvo on edelleenkin komponentin järjestysnumero kertoen siis mihin kantavektoriin tuo komponentti liittyy. Vektorit ovat tensoreita joilla on vain yksi indeksimuuttuja, 1-tensoreita.- Anonyymi
Vektorialgebran ja tensorilaskennan yhteys tulee ilmi juuri kontravarienttien komponenttien kautta. Kantavektori ilmaistaan tässä tapauksessa alaindeksiä käyttäen. Jos yläindeksiä käytetään, pitää koordinaatin järjestysnumero muuttaa kovariantiksi.
Tensorilaskennassa oleellista on juuri tensorin eri komponenttien sovittaminen tavalliseen vektorialgebraan. Merkinnällä X= (x1,x2,x3.....) voidaan tavallinen vektori muuttaa kontravariantti ilmaisulla tensoriksi, jolloin myös kovariantti ratkaisu tulee näkyviin. Tämä tapahtuu peilaamalla ylä- ja alaindeksit toistensa suhteen ns. käänteisoperaation avulla toistensa vastaluvuiksi. Komponentin jäejestysnumero tulee ilmi yläindeksin suhteessa alaindeksiin. Jos se on pariton, puhutaan kontravariantista aliavaruudesta. Parillisessa tapauksessa kyse on kovariantista aliavaruudesta. Jos jako ei ole kokonaisluku, niin silloin siirrytään tensorilaskentaan. Sopivalla tensorimuunnoksella mikä tahansa kontra- taikka kovariantti vektori voidaan muuntaa haluttuun muotoon. Tällöin on ihan sama, käytetäänkö ylä- vaiko alaindeksiä. Lopputulos on sama. Tästä johtuen tensorimerkintä on tehokas apukeino puhuttaessa useampiulottuvuuksien avaruuksien ja aliavaruuksien välisistä yhteyksistä ja merkintätavoista. - Anonyymi
Anonyymi kirjoitti:
Vektorialgebran ja tensorilaskennan yhteys tulee ilmi juuri kontravarienttien komponenttien kautta. Kantavektori ilmaistaan tässä tapauksessa alaindeksiä käyttäen. Jos yläindeksiä käytetään, pitää koordinaatin järjestysnumero muuttaa kovariantiksi.
Tensorilaskennassa oleellista on juuri tensorin eri komponenttien sovittaminen tavalliseen vektorialgebraan. Merkinnällä X= (x1,x2,x3.....) voidaan tavallinen vektori muuttaa kontravariantti ilmaisulla tensoriksi, jolloin myös kovariantti ratkaisu tulee näkyviin. Tämä tapahtuu peilaamalla ylä- ja alaindeksit toistensa suhteen ns. käänteisoperaation avulla toistensa vastaluvuiksi. Komponentin jäejestysnumero tulee ilmi yläindeksin suhteessa alaindeksiin. Jos se on pariton, puhutaan kontravariantista aliavaruudesta. Parillisessa tapauksessa kyse on kovariantista aliavaruudesta. Jos jako ei ole kokonaisluku, niin silloin siirrytään tensorilaskentaan. Sopivalla tensorimuunnoksella mikä tahansa kontra- taikka kovariantti vektori voidaan muuntaa haluttuun muotoon. Tällöin on ihan sama, käytetäänkö ylä- vaiko alaindeksiä. Lopputulos on sama. Tästä johtuen tensorimerkintä on tehokas apukeino puhuttaessa useampiulottuvuuksien avaruuksien ja aliavaruuksien välisistä yhteyksistä ja merkintätavoista.Johan tuli varsinaista "tensorisoopaa"!
Vain yhdenn esimerkin mainitakseni: "vastaluku" : a:n vastaluku on - a.
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Poliisi: Kymmenhenkinen pohjalaisperhe ollut vuoden kateissa kansainvälinen etsintäkuulutus Poliis
Poliisi: Kymmenhenkinen pohjalaisperhe ollut vuoden kateissa – kansainvälinen etsintäkuulutus Poliisi pyytää yleisön apu2712340En kadu sitä, että kohtasin hänet
mutta kadun sitä, että aloin kirjoittamaan tänne palstalle. Jollain tasolla se saa vain asiat enemmän solmuun ja tekee n831021Oisko mitenkään mahdollisesti ihan pikkuisen ikävä..
...edes ihan pikkuisen pikkuisen ikävä sulla mua??.. Että miettisit vaikka vähän missähän se nyt on ja oiskohan hauska n571010- 108980
Noniin rakas
Annetaanko pikkuhiljaa jo olla, niin ehkä säilyy vienot hymyt kohdatessa. En edelleenkään halua sulle tai kenellekään mi81941- 44861
Au pair -työ Thaimaassa herättää kiivasta keskustelua somessa: "4cm torakoita, huumeita, tauteja..."
Au pairit -sarjan uusi kausi herättää keskustelua Suomi24 Keskustelupalvelussa. Mielipiteitä ladataan puolesta ja vastaa21848Helena Koivu : Ja kohta mennään taas
Kohta kohtalon päivä lähestyy kuinka käy Helena Koivulle ? Kenen puolella olet? Jos vastauksesi on Helenan niin voisi67746- 33697
Tässä totuus jälleensyntymisestä - voit yllättyä
Jumalasta syntyminen Raamatussa ei tässä Joh. 3:3. ole alkukielen mukaan ollenkaan sanaa uudestisyntyminen, vaan pelkä299694