Koordinaatteja merkitään xi:llä missä yläindeksi i viittaa koordinaatin järjestysnumeroon. Mutta yläindeksillä merkitään myös kontravariantteja kantavektoreita Ei ja kontravariantteja vektorin komponentteja ai, joten tulee mieleen, tarkoittaako koordinaatin merkintä xi (missä i on yläindeksi) kontravarianttia koordinaattia? En tosin ole koskaan kuullut, että koordinaatit voisivat olla ko- tai kontravariantteja. Ja jos on pakko käyttää koordinaatin järjestysnumeroa, täytyy se merkitä johonkin, ylä- tai alaindeksiksi (olisi tosin muitakin mahdollisia merkintätapoja). Mutta miten on, onko olemassa ko- ja kontravariantteja koordinaatteja?
Kontravariantti koordinaatti?
4
307
Vastaukset
- Anonyymi
Kontravariantti merkintä ilmaisee koordinaatin järjestysnumeron kantavektorin suhteen joko ylä- tai alaindeksin suhteen. Molemmat mahdollisia. Vektorin ko- ja kontravariantti komponentti ovat toistensa vastavektoreita, jolloin vektoria xi voidaan pitää merkityksemättömänä. Molempia koordinaatteja siis on olemassa. Kontravariantit koordinaatit ilmaisevat järjestysnumeron, ko-variantit kantavektorin ala- taikka yläindeksin. Vektorin yläindeksi voidaan myös muuntaa alaindekseksi käyttäen kontravarianttia järjestysnumeroa.
- Anonyymi
Tavallisessa vektorialgebrassa on vain yhdenlaisia koordinaatteja joilla on tietysti eri arvoja eri koordinaatistoissa. Sillä, missä kohtaa koordinaatin järjestysnumero sijaitsee, ei ole merkitystä. Koordinaatin indeksin arvo kertoo, mihin kantavektoriin tuo koordinaatti liittyy. Voi kirjottaa jopa näin:
X = ( x(1), x(2),...,x(n) ).
Jos mennään tensorilaskennan puolelle niin tensorien komponentit ovat tosiaan kovariantteja tai kontravariantteja. Tämä ilmaistaan alaindeksillä tai yläindeksillä. Indeksin arvo on edelleenkin komponentin järjestysnumero kertoen siis mihin kantavektoriin tuo komponentti liittyy. Vektorit ovat tensoreita joilla on vain yksi indeksimuuttuja, 1-tensoreita.- Anonyymi
Vektorialgebran ja tensorilaskennan yhteys tulee ilmi juuri kontravarienttien komponenttien kautta. Kantavektori ilmaistaan tässä tapauksessa alaindeksiä käyttäen. Jos yläindeksiä käytetään, pitää koordinaatin järjestysnumero muuttaa kovariantiksi.
Tensorilaskennassa oleellista on juuri tensorin eri komponenttien sovittaminen tavalliseen vektorialgebraan. Merkinnällä X= (x1,x2,x3.....) voidaan tavallinen vektori muuttaa kontravariantti ilmaisulla tensoriksi, jolloin myös kovariantti ratkaisu tulee näkyviin. Tämä tapahtuu peilaamalla ylä- ja alaindeksit toistensa suhteen ns. käänteisoperaation avulla toistensa vastaluvuiksi. Komponentin jäejestysnumero tulee ilmi yläindeksin suhteessa alaindeksiin. Jos se on pariton, puhutaan kontravariantista aliavaruudesta. Parillisessa tapauksessa kyse on kovariantista aliavaruudesta. Jos jako ei ole kokonaisluku, niin silloin siirrytään tensorilaskentaan. Sopivalla tensorimuunnoksella mikä tahansa kontra- taikka kovariantti vektori voidaan muuntaa haluttuun muotoon. Tällöin on ihan sama, käytetäänkö ylä- vaiko alaindeksiä. Lopputulos on sama. Tästä johtuen tensorimerkintä on tehokas apukeino puhuttaessa useampiulottuvuuksien avaruuksien ja aliavaruuksien välisistä yhteyksistä ja merkintätavoista. - Anonyymi
Anonyymi kirjoitti:
Vektorialgebran ja tensorilaskennan yhteys tulee ilmi juuri kontravarienttien komponenttien kautta. Kantavektori ilmaistaan tässä tapauksessa alaindeksiä käyttäen. Jos yläindeksiä käytetään, pitää koordinaatin järjestysnumero muuttaa kovariantiksi.
Tensorilaskennassa oleellista on juuri tensorin eri komponenttien sovittaminen tavalliseen vektorialgebraan. Merkinnällä X= (x1,x2,x3.....) voidaan tavallinen vektori muuttaa kontravariantti ilmaisulla tensoriksi, jolloin myös kovariantti ratkaisu tulee näkyviin. Tämä tapahtuu peilaamalla ylä- ja alaindeksit toistensa suhteen ns. käänteisoperaation avulla toistensa vastaluvuiksi. Komponentin jäejestysnumero tulee ilmi yläindeksin suhteessa alaindeksiin. Jos se on pariton, puhutaan kontravariantista aliavaruudesta. Parillisessa tapauksessa kyse on kovariantista aliavaruudesta. Jos jako ei ole kokonaisluku, niin silloin siirrytään tensorilaskentaan. Sopivalla tensorimuunnoksella mikä tahansa kontra- taikka kovariantti vektori voidaan muuntaa haluttuun muotoon. Tällöin on ihan sama, käytetäänkö ylä- vaiko alaindeksiä. Lopputulos on sama. Tästä johtuen tensorimerkintä on tehokas apukeino puhuttaessa useampiulottuvuuksien avaruuksien ja aliavaruuksien välisistä yhteyksistä ja merkintätavoista.Johan tuli varsinaista "tensorisoopaa"!
Vain yhdenn esimerkin mainitakseni: "vastaluku" : a:n vastaluku on - a.
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
- 1723570
Tekisi niin mieli laittaa sulle viestiä
En vaan ole varma ollaanko siihen vielä valmiita, vaikka halua löytyykin täältä suunnalta, ja ikävää, ja kaikkea muuta m851598Miksi ihmeessä?
Erika Vikman diskattiin, ei osallistu Euroviisuihin – tilalle Gettomasa ja paluun tekevä Cheek261317- 1581242
Pitääkö penkeillä hypätä Martina?
Eivätkö puistonpenkit ole istumista varten.Ei niitä kannata liata hyppäämällä koskaa likaantuvat eikä siellä kukaan niit1941013Erika Vikman diskattiin, tilalle Gettomasa ja paluun tekevä Cheek
Erika Vikman diskattiin, ei osallistu Euroviisuihin – tilalle Gettomasa ja paluun tekevä Cheek https://www.rumba.fi/uut16983- 35981
Kuinka kauan
Olet ollut kaivattuusi ihastunut/rakastunut? Tajusitko tunteesi heti, vai syventyivätkö ne hitaasti?63879Maikkarin tentti: Orpo jälleen rauhallinen ja erittäin hyvä, myös Purra oli hyvä
Lindtman ja Kaikkonen oli kohtalaisia, sen sijaan punavihreät Koskela ja Virta olivat taas heikkoja. Ja vastustavat jalk95829- 62765