Juomia sekoittamassa

Anonyymi-ap

Tässä palstan matematiikan taitajille haaste. Tämän pitäisi olla helppo, mutta minä en tajua että miten tämä lasketaan.

Joka aamu, henkilö ottaa pullon, johon hän ensin valuttaa vettä.
Sitten hän sekoittaa siihen kupillisen kolatiivistettä, ja toisen kupillisen jaffatiivistettä. Kolalla ja Jaffalla on omat pullonsa, joista saa otettua aina noin 50 kupillista (eli 50 päivittäistä annosta).

Jaffan ja kolan määrän kanssa on joka päivä heittoa satunnaisesti noin 10% "kupillisesta", eli henkilö kaataa joko 10% enemmän tai 10% vähemmän, mutta heitto ei koskaan ylitä noita rajoja. Optimi olisi tietenkin 0 prosenttia heittoa jolloin viimeinenkin kupillinen voidaan kaataa täytenä annoksena pulloon.

Nuo heitot eivät ole riippuvaisia toisistaan, eli voi olla niin että esimerkiksi kolaa ja jaffaa tulee kummastakin kupillisesta eräänä aamuna 10% vähemmän, tai vastaavasti 10% enemmän.

Tämän lisäksi. Jos kola tai jaffapullosta ei saa enää otettua puolta kupillista enempää (<50% annoksesta), täytyy ottaa tilalle uusi pullo.

Tapaus 1. Vanha pullo menee vaihtoon vaikka siellä olisi vähän juomaa jäljellä. Vanhan juoman jämiä ei lisätä uuden pullon ensimmäiseen annokseen!

Tapaus 2. Vanha pullo menee kierrätykseen, ja vanhan pullon jämät lisätään seuraavan pullon ensimmäiseen annokseen!

Eli missä vaiheessa käy niin että kun kupillisia on kaadettu päivittäin tuohon pulloon veden sekaan, että jompi kumpi, jaffa tai kolapullo, ei enää annakaan tarpeeksi, vaan henkilö joutuu avaamaan uuden pullon josta kaataa "kupillinen" joko kolaa tai jaffaa ja jota riittää taas sen noin 50 annoksen ajan?

En osaa tuota laskea ja tätä todistaa, mutta eikö teidänkin mielestä järki sano niin että nuo kaksi tapausta eivät käytännössä eroa toisistaan?

4

102

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Ei minunkaan mielestä eroa. Koska kysymys koskee sitä milloin ensimmäisen kerran pullo "loppuu" (eli siellä on alle puoli annosta), niin eihän sillä ole väliä mitä sen jälkeen tehdään.

      Mitenkäs muuten jos pullossa on jäljellä annoksesta 50% - 90% (tai 110%, joka voi maksimissaan myös mennä), niin laitetaanko sitten vaan kaikki ja ensi kerralla otetaan uusi pullo?

      Oletetaanko että tuolla "kupillisen kaadolla" on vaikkapa kolmio jakauma eli tällainen:

      https://www.desmos.com/calculator/ewuam0ckrn

      Ja sitten meillä on näitä i.i.d jonot X1,X2,... ja Y1,Y2,... ja määritellään

      SX_n = X1+...+Xn
      SY_n = Y1+...+Yn
      ja
      N = min(n : max( SX_n, SY_n )>49.5 ).

      Sellainen tunnettu kysymyshän on olemassa että kuinka monta (0,1)-tasajakautunutta lukua pitää summata, jotta vastaus menee yli yhden. Ja se on odotusarvoisesti e. Mutta tässä mennään suurempaan lukuun asti ja on kaksi riippumatonta summaa ja riittää että toinen menee yli. Hmmm...

    • Anonyymi

      Yhdelle pullolle tehtävä saadaan laskettua seuraavasti.
      Oletetaan kupillisen otolle tasajakauma väliltä [0.9, 1.1].
      Päiviä voi mennä väliltä 45 - 55
      Käyttämällä Gil-Pelaez kaavaa:

      https://en.wikipedia.org/wiki/Characteristic_function_(probability_theory)#Inversion_formula

      saadaan n:n kupillisen summan kertymäfunktion arvo pisteessä S laskettua Sage-koodilla:

      0.5+1/3.141592653589793*numerical_integral(lambda t: (exp(-i*t*49.5)*((exp(i*t*1.1)-exp(i*t*0.9))/(i*0.2*t))^n).imag()/t, 0, Infinity)[0]

      arvoille <48 ja >52 todennäköisyys on niin pientä, että numeerinen tarkkuus ei riitä, mutta todennäköisyydet että päiviä menee n, kun n=48,..,52 ovat

      48: 0.00007359
      49: 0.10828406
      50: 0.78095746
      51: 0.11056664
      52: 0.00011825

      Kahdelle pullolle pitäisi sitten laskea (SX_n, SY_n):n kaksiulotteisesta jakaumasta F_n = P(min(SX_n,SY_n) < 49.5). Ja F_{n-1}-F_n on sitten P(N=n). Simulointi antaa seuraavanlaisia arvoja:

      {48: 0.000144, 49: 0.20372, 50: 0.783864, 51: 0.012272}.

      PS. Jos halutaan käyttää muuta jakaumaa kuin tasajakaumaa, niin vaihdetaan sen karakteristinen funktio koodiin `(exp(i*t*1.1)-exp(i*t*0.9))/(i*0.2*t)`:n tilalle.

    • Anonyymi

      Kahden pullon versionhan saa laskettua yhden pullon todennäköisyyksien avulla

      P(max(X,Y)<S) = P(X<S ja Y<S) = P(X<S)*P(Y<S),

      koska X ja Y ovat riippumattomat.

      Lisäksi voidaan tehdä näin: S_n = 0.9n + 0.2(U1+...+Un), missä Uj ~U(0,1). Nyt U1+...+Un noudattaa Irwin-Hall jakaumaa ( https://en.wikipedia.org/wiki/Irwin–Hall_distribution ) ja tämä Sage-koodi laskee tarkat arvot:

      https://pastebin.com/Kdib10Ds

      Muuten, normaaliapproksimaationhan voi tehdä, koska tutkittavat n:n arvot ovat jo suurehkoja: https://www.desmos.com/calculator/tmbemssyjj
      Siinähän käytettävällä "kupillisen" distribuutiolla ei ole väliä, pelkästään sen varianssilla. Tasajakaumalle se on 1/12*0.2^2 = 1/300 ja se on itseasiassa maksimaalinen mahdollinen, kun jakauman kantaja on [0.9, 1.1].

    • Anonyymi

      Höpöhöpö.

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Poliisi: Kymmenhenkinen pohjalaisperhe ollut vuoden kateissa kansainvälinen etsintäkuulutus Poliis

      Poliisi: Kymmenhenkinen pohjalaisperhe ollut vuoden kateissa – kansainvälinen etsintäkuulutus Poliisi pyytää yleisön apu
      Maailman menoa
      467
      4034
    2. Tässä totuus jälleensyntymisestä - voit yllättyä

      Jumalasta syntyminen Raamatussa ei tässä Joh. 3:3. ole alkukielen mukaan ollenkaan sanaa uudestisyntyminen, vaan pelkä
      Jälleensyntyminen
      318
      1692
    3. Mitään järkeä?

      Että ollaan erillään? Kummankin pää on kovilla.
      Ikävä
      116
      1526
    4. En kadu sitä, että kohtasin hänet

      mutta kadun sitä, että aloin kirjoittamaan tänne palstalle. Jollain tasolla se saa vain asiat enemmän solmuun ja tekee n
      Ikävä
      89
      1474
    5. Noniin rakas

      Annetaanko pikkuhiljaa jo olla, niin ehkä säilyy vienot hymyt kohdatessa. En edelleenkään halua sulle tai kenellekään mi
      Ikävä
      99
      1408
    6. Oisko mitenkään mahdollisesti ihan pikkuisen ikävä..

      ...edes ihan pikkuisen pikkuisen ikävä sulla mua??.. Että miettisit vaikka vähän missähän se nyt on ja oiskohan hauska n
      Ikävä
      60
      1375
    7. Lapuan sanomissa käy rytinä

      Pistivät sitten päätoimittajan pihalle
      Lapua
      52
      1316
    8. Helena Koivu : Ja kohta mennään taas

      Kohta kohtalon päivä lähestyy kuinka käy Helena Koivulle ? Kenen puolella olet? Jos vastauksesi on Helenan niin voisi
      Kotimaiset julkkisjuorut
      98
      1229
    9. Oot ihana

      Toivottavasti nähdään sattumalta jonain kesäpäivänä♥️🥺🫂
      Ikävä
      44
      1079
    10. Au pair -työ Thaimaassa herättää kiivasta keskustelua somessa: "4cm torakoita, huumeita, tauteja..."

      Au pairit -sarjan uusi kausi herättää keskustelua Suomi24 Keskustelupalvelussa. Mielipiteitä ladataan puolesta ja vastaa
      Tv-sarjat
      34
      1078
    Aihe