Juomia sekoittamassa

Anonyymi-ap

Tässä palstan matematiikan taitajille haaste. Tämän pitäisi olla helppo, mutta minä en tajua että miten tämä lasketaan.

Joka aamu, henkilö ottaa pullon, johon hän ensin valuttaa vettä.
Sitten hän sekoittaa siihen kupillisen kolatiivistettä, ja toisen kupillisen jaffatiivistettä. Kolalla ja Jaffalla on omat pullonsa, joista saa otettua aina noin 50 kupillista (eli 50 päivittäistä annosta).

Jaffan ja kolan määrän kanssa on joka päivä heittoa satunnaisesti noin 10% "kupillisesta", eli henkilö kaataa joko 10% enemmän tai 10% vähemmän, mutta heitto ei koskaan ylitä noita rajoja. Optimi olisi tietenkin 0 prosenttia heittoa jolloin viimeinenkin kupillinen voidaan kaataa täytenä annoksena pulloon.

Nuo heitot eivät ole riippuvaisia toisistaan, eli voi olla niin että esimerkiksi kolaa ja jaffaa tulee kummastakin kupillisesta eräänä aamuna 10% vähemmän, tai vastaavasti 10% enemmän.

Tämän lisäksi. Jos kola tai jaffapullosta ei saa enää otettua puolta kupillista enempää (<50% annoksesta), täytyy ottaa tilalle uusi pullo.

Tapaus 1. Vanha pullo menee vaihtoon vaikka siellä olisi vähän juomaa jäljellä. Vanhan juoman jämiä ei lisätä uuden pullon ensimmäiseen annokseen!

Tapaus 2. Vanha pullo menee kierrätykseen, ja vanhan pullon jämät lisätään seuraavan pullon ensimmäiseen annokseen!

Eli missä vaiheessa käy niin että kun kupillisia on kaadettu päivittäin tuohon pulloon veden sekaan, että jompi kumpi, jaffa tai kolapullo, ei enää annakaan tarpeeksi, vaan henkilö joutuu avaamaan uuden pullon josta kaataa "kupillinen" joko kolaa tai jaffaa ja jota riittää taas sen noin 50 annoksen ajan?

En osaa tuota laskea ja tätä todistaa, mutta eikö teidänkin mielestä järki sano niin että nuo kaksi tapausta eivät käytännössä eroa toisistaan?

5

464

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Ei minunkaan mielestä eroa. Koska kysymys koskee sitä milloin ensimmäisen kerran pullo "loppuu" (eli siellä on alle puoli annosta), niin eihän sillä ole väliä mitä sen jälkeen tehdään.

      Mitenkäs muuten jos pullossa on jäljellä annoksesta 50% - 90% (tai 110%, joka voi maksimissaan myös mennä), niin laitetaanko sitten vaan kaikki ja ensi kerralla otetaan uusi pullo?

      Oletetaanko että tuolla "kupillisen kaadolla" on vaikkapa kolmio jakauma eli tällainen:

      https://www.desmos.com/calculator/ewuam0ckrn

      Ja sitten meillä on näitä i.i.d jonot X1,X2,... ja Y1,Y2,... ja määritellään

      SX_n = X1+...+Xn
      SY_n = Y1+...+Yn
      ja
      N = min(n : max( SX_n, SY_n )>49.5 ).

      Sellainen tunnettu kysymyshän on olemassa että kuinka monta (0,1)-tasajakautunutta lukua pitää summata, jotta vastaus menee yli yhden. Ja se on odotusarvoisesti e. Mutta tässä mennään suurempaan lukuun asti ja on kaksi riippumatonta summaa ja riittää että toinen menee yli. Hmmm...

    • Anonyymi

      Yhdelle pullolle tehtävä saadaan laskettua seuraavasti.
      Oletetaan kupillisen otolle tasajakauma väliltä [0.9, 1.1].
      Päiviä voi mennä väliltä 45 - 55
      Käyttämällä Gil-Pelaez kaavaa:

      https://en.wikipedia.org/wiki/Characteristic_function_(probability_theory)#Inversion_formula

      saadaan n:n kupillisen summan kertymäfunktion arvo pisteessä S laskettua Sage-koodilla:

      0.5+1/3.141592653589793*numerical_integral(lambda t: (exp(-i*t*49.5)*((exp(i*t*1.1)-exp(i*t*0.9))/(i*0.2*t))^n).imag()/t, 0, Infinity)[0]

      arvoille <48 ja >52 todennäköisyys on niin pientä, että numeerinen tarkkuus ei riitä, mutta todennäköisyydet että päiviä menee n, kun n=48,..,52 ovat

      48: 0.00007359
      49: 0.10828406
      50: 0.78095746
      51: 0.11056664
      52: 0.00011825

      Kahdelle pullolle pitäisi sitten laskea (SX_n, SY_n):n kaksiulotteisesta jakaumasta F_n = P(min(SX_n,SY_n) < 49.5). Ja F_{n-1}-F_n on sitten P(N=n). Simulointi antaa seuraavanlaisia arvoja:

      {48: 0.000144, 49: 0.20372, 50: 0.783864, 51: 0.012272}.

      PS. Jos halutaan käyttää muuta jakaumaa kuin tasajakaumaa, niin vaihdetaan sen karakteristinen funktio koodiin `(exp(i*t*1.1)-exp(i*t*0.9))/(i*0.2*t)`:n tilalle.

    • Anonyymi

      Kahden pullon versionhan saa laskettua yhden pullon todennäköisyyksien avulla

      P(max(X,Y)<S) = P(X<S ja Y<S) = P(X<S)*P(Y<S),

      koska X ja Y ovat riippumattomat.

      Lisäksi voidaan tehdä näin: S_n = 0.9n + 0.2(U1+...+Un), missä Uj ~U(0,1). Nyt U1+...+Un noudattaa Irwin-Hall jakaumaa ( https://en.wikipedia.org/wiki/Irwin–Hall_distribution ) ja tämä Sage-koodi laskee tarkat arvot:

      https://pastebin.com/Kdib10Ds

      Muuten, normaaliapproksimaationhan voi tehdä, koska tutkittavat n:n arvot ovat jo suurehkoja: https://www.desmos.com/calculator/tmbemssyjj
      Siinähän käytettävällä "kupillisen" distribuutiolla ei ole väliä, pelkästään sen varianssilla. Tasajakaumalle se on 1/12*0.2^2 = 1/300 ja se on itseasiassa maksimaalinen mahdollinen, kun jakauman kantaja on [0.9, 1.1].

    • Anonyymi

      Höpöhöpö.

    • Anonyymi

      Anna sinä vaan pennulle jaffaa....

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Kuolemanrangaistus

      Mielestäni kuolemanrangaistus on väärin kaikissa tilanteissa. Vaikka joku olisi murhannut 10 ihmistä, hänen surmaaminen
      Laki ja rikos
      120
      6998
    2. Miksi persut eivät häädä mamuja pois Suomesta?

      Sitä vartenhan persut äänestettiin valtaan. Nyt valta on persuilla. Mamut nostaa työttömyyskorvauksia. Persut huutaa mam
      Maailman menoa
      52
      4714
    3. Riikka Purra ei estä tehomaksun käyttöönottoa

      Sähkön hinnoittelua koskevan määräyksen on määrä astua voimaan vuoden 2029 alusta, Energiavirastosta kerrotaan. Määräyk
      Maailman menoa
      74
      3724
    4. Sinä olet minun forEver

      Sinä olet minun sielussain, sydämessäin, huulillain, sinä olet ain, Sinä olet vieressäin, kainalossain, sylissäin, ain,
      Ikävä
      27
      2794
    5. Sanna Marinille pedataan paluuta pääministeriksi?

      Näyttäisi mylly lähteneen käyntiin nyt toden teolla. Nykyiset oikeistodemarit haukutaan vasemmistodemareiden toimesta ni
      Maailman menoa
      32
      2478
    6. Jos kaikki lopulta kuolevat, onko edes pahimmillakaan rikoksilla mitään väliä?

      Kaikki kuolevat lopulta. Siksi ihmisten tekemillä rikoksillakaan ei lopulta ole mitään merkitystä. Joidenkin mielestä t
      Filosofia
      22
      1936
    7. Mies joka vetäytyy osoittaa teoillaan

      Ettei halua olla tekemisissä. Mies joka ei vastaa viesteihin, ei halua sua. Mies joka jättää sut epätietoisuuteen, ei
      Ikävä
      200
      1438
    8. Martinan prinsessahäät peruuntui

      Seiska uutisoi Kauneus ja Terveyslehden artikkeliin perustuen mihin nämä häät kosahti.
      Kotimaiset julkkisjuorut
      319
      1244
    9. Vakavasti psyykkisesti sairas on pakkohoidossa - Ja asuu silti kotona

      Miten käy, kun vakavasti psyykkisesti sairas "hoidetaan" kotona? Norjassa psyykkisesti sairaiden vuodepaikkojen määrä on
      37
      1052
    10. Pahastuisitko

      Jos tietäisit, että katselen lähes päivittäin kuviasi? Miehelle
      Ikävä
      88
      898
    Aihe