9-kerroksen parvekkeelta putoamisen huippunopeus?

tietämätön Perhosta

Pitäisihän tämän osata laskea, ilman tuulta tms., mutta kaavat ovat unohtuneet enkä vanhoja vihkoja tarkene mennä kylmävarastosta etsimään. Auttakaa siis jos menee väärin.

Eli painovoima on likimäärin 9,81 metriä/sekunnin neliössä, matkan ajattelin ~3m*9kerrosta-lumivaippa=25m

25m* 9,81m/s^2 = 245,25m^2/s^2 =(245,25m^2/s^2)^½ =15,653m/s *3600s/1000m=56,35km/h?

26

1235

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • satunnainen kävijä

      Joo, oikean suuntainen tulos tuo on, jos korkeudeksi olettaa 25m.

      • satunnainen kävijä

        Kas. näköjään olen jotain näppäillyt väärin. En tiedä mitä näppäilin väärin, mutta käytin mielestäni kaavaa
        v = sqrt(2gh). No joo, välillä virheitäkin tapahtuu.


    • martta0

      Alastulonopeus on (2gh)^0,5 = 22,15 m/s eli 22,15 x 3,6 = 79,7 km/h

      • tietämätön Perhosta

        Ilmeisestikin tämä 79,7km/h on vielä oikeamman suuntainen kuin tuo oma laskelmani? Kiitos siitä.

        Katselin muualta, että tämä (2gh^0,5) -kaava on johdettu energialaskusta, ja jäi hämäämään,
        Miksei tuosta painovoiman kiihtyvyydestä tule oikea tulos? Kaikki kirjaimetkin sain oikein niinkuin opettaja on käskenyt. Eli mitä elementtiä tuo kahdella kertominen tuo, joka ei ensimmäisessä viestissäni esiintynyt?


      • martta0
        tietämätön Perhosta kirjoitti:

        Ilmeisestikin tämä 79,7km/h on vielä oikeamman suuntainen kuin tuo oma laskelmani? Kiitos siitä.

        Katselin muualta, että tämä (2gh^0,5) -kaava on johdettu energialaskusta, ja jäi hämäämään,
        Miksei tuosta painovoiman kiihtyvyydestä tule oikea tulos? Kaikki kirjaimetkin sain oikein niinkuin opettaja on käskenyt. Eli mitä elementtiä tuo kahdella kertominen tuo, joka ei ensimmäisessä viestissäni esiintynyt?

        Energiaperiaate: mgh = 0,5mv^2, josta v = (2gh)^0,5.

        Mekaniikan (dynamiikan) mukaisesti taas tarvittavat kaavat ovat: h = 0,5gt^2, jossa t = putoamisaika korkeudelta h sekä vielä v = gt, jossa v = loppunopeus. Ja g oli maan vetovoiman kiihtyvyys 9,81 m/s^2. Ratkaise t jälkimmäisestä ja sijoita ensimmäiseen, niin saat loppunopeudelle saman v = (2gh)^0,5.

        Ja mistä se 0,5 tulee noihin kaavoihin, niin se vaatiikin jo integrointia...


      • Tietämätön Perhosta
        tietämätön Perhosta kirjoitti:

        Ilmeisestikin tämä 79,7km/h on vielä oikeamman suuntainen kuin tuo oma laskelmani? Kiitos siitä.

        Katselin muualta, että tämä (2gh^0,5) -kaava on johdettu energialaskusta, ja jäi hämäämään,
        Miksei tuosta painovoiman kiihtyvyydestä tule oikea tulos? Kaikki kirjaimetkin sain oikein niinkuin opettaja on käskenyt. Eli mitä elementtiä tuo kahdella kertominen tuo, joka ei ensimmäisessä viestissäni esiintynyt?

        Liike-energiahan siinä kaiketi lisääntyy, ja se sitten vaikuttaa kiihtymiseen, niin ettei pelkkä painovoima kerro koko totuutta. Pitää ymmärtää oman ymmärtämyksensä rajat :)

        Tänne on liian helppo heitellä samoja kysymyksiä kuin edelliset, mutta kiitos kun jaksoitte auttaa ja osallistua.


      • Tietämätön Perhosta kirjoitti:

        Liike-energiahan siinä kaiketi lisääntyy, ja se sitten vaikuttaa kiihtymiseen, niin ettei pelkkä painovoima kerro koko totuutta. Pitää ymmärtää oman ymmärtämyksensä rajat :)

        Tänne on liian helppo heitellä samoja kysymyksiä kuin edelliset, mutta kiitos kun jaksoitte auttaa ja osallistua.

        >

        Painovoima kyllä kertoo koko totuuden. Liike-energiahan lisääntyy juuri painovoiman takia. Se paljonko putoavalla kappaleella on liike-energiaa, ei mitenkään vaikuta sen kiihtyvyyteen. Siihen kohdistuu kaiken aikaa sama 9.81m/s^2 kiihtyvyys (jos ilmanvastusta ei huomioida). Laskusi nyt vain on tällä kertaa virheellinen. Olet kertonut kiihtyvyyden etäisyydellä ja tämä tulo ei edusta mitään todellista fysikaalista suuretta. Siitä ottamalla mielivaltaisesti neliöjuuri saadaan kyllä tehtävän kannalta oikea yksikkö, mutta vastaus ei edelleenkään kuvaa minkään todellisen fysikaalisen suureen arvoa.

        9.81m/s^2 kiihtysyyshän tarkoittaa sitä, että yhden sekunnin aikana nopeus kasvaa 9,81m/s. Voisit periaatteessa ensin laskea kauanko kappaleen kestää pudota tuolla kiihtyvyydellä 25m matka. Tämän jälkeen kertomalla kiihtyvyys putoamisajalla saadaan loppunopeus. Yksinkertaisinta on kuitenkin ratkaista ongelma energiaperiaatteella kuten edellä esitetty. Potentiaalienergia alussa on yhtä suuri kuin liike-energia lopussa.


      • näin ajattelin
        martta0 kirjoitti:

        Energiaperiaate: mgh = 0,5mv^2, josta v = (2gh)^0,5.

        Mekaniikan (dynamiikan) mukaisesti taas tarvittavat kaavat ovat: h = 0,5gt^2, jossa t = putoamisaika korkeudelta h sekä vielä v = gt, jossa v = loppunopeus. Ja g oli maan vetovoiman kiihtyvyys 9,81 m/s^2. Ratkaise t jälkimmäisestä ja sijoita ensimmäiseen, niin saat loppunopeudelle saman v = (2gh)^0,5.

        Ja mistä se 0,5 tulee noihin kaavoihin, niin se vaatiikin jo integrointia...

        Integrointia ei tarvita. Lauseke h = ½ g t² voidaan nimittäin kirjoittaa muotoon h = ½(0 gt)·t. Lauseke ½(0 gt) antaa keskinopeuden kiihtyvälle liikkeelle ajan t kuluessa. Ja nopeus kertaa aika on matka.


    • ????

      vuoksi laitan tähän tämän vanhan laskun ilmanvastuksen kanssa:

      http://keskustelu.suomi24.fi/node/8284320#comment-38716082

      jos tuohon alimpaan laitetaan ajaksi t=2,32 sek, niin s=25 m ja loppunopeus v=21,3 m/s=76,7 km/h

      ja ilman ilmanvastusta ne olivat t=2,26 sek ja loppunopeus v=22,15 m/s= 79,7 km/h

      aika mitätön ero, joten tältä korkeudelta hypätessä ilmanvastuksella ei vielä merkitystä edes ole.

    • kaavat__
    • mitä välii, heiii!

      Ihan sama, kuolee kumminki.

      • 5 + 6 = 11

        jos tiputan tennispallon 9 kerroksen parvekkeelta, niin kuka muka kuolee ja miksi ?

        eihän missään sanottu, että mikä putoaa ...


      • Anonyymi
        5 + 6 = 11 kirjoitti:

        jos tiputan tennispallon 9 kerroksen parvekkeelta, niin kuka muka kuolee ja miksi ?

        eihän missään sanottu, että mikä putoaa ...

        Jos hyppää poplari päällä, putoaminen muuttuu liidoksi ja näin poplari voi pelastaa sinut vaikealta vammautumiselta.


      • Anonyymi
        Anonyymi kirjoitti:

        Jos hyppää poplari päällä, putoaminen muuttuu liidoksi ja näin poplari voi pelastaa sinut vaikealta vammautumiselta.

        Varmaankin tuo yli 14 vuotta sitten kommentoinut luki viestisi ja on nyt tyytyväinen oppisi saatuaan.


    • Anonyymi

      Maan vetovoiman aiheuttama kiihtyvyys on g = 9.81 m/s^2. v=gt, kun t on putoamiseen kuluva aika. Keskinopeus on puolet v:stä. Kun matka on h, niin aikaa kuluu t=h/(v/2) = 2h/v. Näin ollen v = gt = 2 gh/v, josta v^2=2gh. Saadaan v = sqrt( 2gh ). Jos h=9*3m = 27 m, niin nopeus putoamishetkellä on v = 23 m/s.

      • Anonyymi

        Päättelyn sijasta voidaan käyttää energiaperiaatetta. Pudotuksen lopussa potentiaalienergia on muuttunut liike-energiaksi.

        m g h = (1/2) m v^2
        v = sqrt( 2gh )


      • Anonyymi

        Differentiaalilaskentaa soveltaen saadaan:
        dv/dt = -g
        dv = -g dt
        Intergoimalla saadaan
        v-v0 = -gt
        Kun v0 = 0, niin
        v = -gt
        dh/dt = v = -gt
        dh = -gt dt
        Integroimalla saadaan
        h - h0 = -(1/2) g t^2 # h0 on lähtökorkeus
        t = -v/g
        h = h0 - (1/2) v^2/g
        Kun h=0, niin
        v^2 = 2gh0
        v = +/- sqrt(2h0 g )
        Koska pudotus on alaspäin ( v=-gt), valitaan negatiivinen nopeus.


      • Anonyymi

        Ensimmäinen ratkaisu irtoaa päättelemällä, toinen energiaperiaatteella jo kolmas differentiaalilaskennalla. Kaikki johtavat samaa lopputulokseen.


      • Anonyymi

        Nopeus 23 m/s vastaa 83 km/h. Pudotus 9 kerroksesta vastaa suunnilleen samaa kuin ajaisi autolla 80 nopeudesta päin kivitalon seinää.


      • Anonyymi
        Anonyymi kirjoitti:

        Nopeus 23 m/s vastaa 83 km/h. Pudotus 9 kerroksesta vastaa suunnilleen samaa kuin ajaisi autolla 80 nopeudesta päin kivitalon seinää.

        Paitsi parvekkeelta kadulle pudotuksessa ei ole autoa ja turvavöitä suojana.


      • Anonyymi
        Anonyymi kirjoitti:

        Paitsi parvekkeelta kadulle pudotuksessa ei ole autoa ja turvavöitä suojana.

        Jos ennen pysähtymistä auton nokka painuu kasaan yhden metrin matkalta ja alkunopeus on 23 m/s, niin keskinopeus on 11.5 m/s. Aikaa kuluu 0.08695 s. Kiihtyvyys on 265 m/s^2 eli 27 "geetä".


      • Anonyymi
        Anonyymi kirjoitti:

        Jos ennen pysähtymistä auton nokka painuu kasaan yhden metrin matkalta ja alkunopeus on 23 m/s, niin keskinopeus on 11.5 m/s. Aikaa kuluu 0.08695 s. Kiihtyvyys on 265 m/s^2 eli 27 "geetä".

        yle:
        -Ihmisen kokemia G-voimia testattiin toisen maailmansodan jälkeen. Koekaniiniksi G-voimia testaavaan rakettikelkkaan asetettu John Stapp kesti pahimmillaan 46 G:n voimat. Kuten kuvista näkyy ihmiskeho joutuu äärimmäisen koville näin kovissa G-voimissa.

        -Kolaritilanteissa ihmiset ovat selviytyneet hengissä jopa yli 100 G:n voimista. Vuonna 1977 F1-kuski David Purley törmäsi suoraan seinään ja koki 179 G:n voimat, kun auto pysähtyi 173 km/h vauhdista nollaan vain 66 sentin matkalla.


    • Anonyymi

      riippuu miltä puolelrta maapalloa tipahdat kun pyöteii.... jos vielä pitää huomioida potetiaaline4n mangman eli vvaihtelevuus pikoseunneittainkin ottaa laskuissa huomioon.

    • Anonyymi

      Joskus törmänny yleistykseen, että
      ...olisko ollut 8.krs, jota korkeammalta ihmisen nopeus ei kiihtyisi enempää?

      Luulisi, että asento vaikuttaisi aika paljon ilmanvastukseen.

      • Anonyymi

        Vapaassa pudotuksessa rajanopeus on luokkaa 200 km/h eli 55 m/s. Kiihtyvyydellä 9.81 m/s^2 sen saavuttamiseen menee vähintään 5.6 s, ilmanvastus huomioiden hieman enemmän. Keskinopeus on luokkaa 55/2 m/s, joten pudotusmatka on 154 m. Kerrostalon korkeus on luokkaa 3 m/kerros, joten tarvitaan noin 50 kerroksinen talo, jotta putoamisnopeus ei enää kiihdy ennen tömäystä.


    • Anonyymi

      Riippuu siitä mikä sieltä putoaa. Untuva menee aika hitaasti alas mutta jos itse hyppäät niin nopeus on sellanen että siinä on henki pois.

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Sanna niin nättinä Amsterdamin Business Foorumilla

      Upeasti edustaa taas Suomea ulkomailla meidän kansainvälinen superstaramme. Miksei persuilla ole ketään siedettävän näk
      Maailman menoa
      159
      9945
    2. Stubb jo paljon tunnetumpi kuin kaikki persut yhteensä

      Nyt on aika ottaa mittaa tunnettavuudesta, herrat ja narrit! Joku tuolla toisessa ketjussa väitti, että "persujen rivimi
      Maailman menoa
      3
      9533
    3. Työeläkkeiden maksaminen on lopetettava

      Suomen talous on palkansaajien vuosikausia heikentyneen ostovoiman vuoksi niin kuralla, että palkkasumman jakamisessa ta
      Maailman menoa
      139
      8040
    4. Sofia Virran pahoinpitelyä puolustetaan netissä

      HS soitti Virran pahoinpitelyä puolustaneille https://www.hs.fi/politiikka/art-2000011516353.html
      Maailman menoa
      261
      7558
    5. Purra tekee hyvää työtä, me suomalaiset haluamme että hän jatkaa myös

      seuraavan hallituksen valtiovarainministerinä. Kovina aikoina pitää olla kova.
      Maailman menoa
      130
      6222
    6. Koska Minja Koskela ja Sofia Virta kääntyy islamiin?

      Sekä vihreät että vasurit selvästi pitävät islamista ja muslimeista, varsinkin naiset, joten voidaan olettaaa että nuo k
      Maailman menoa
      87
      5987
    7. Persu Keskisarja on politiikan Uuno Turhapuro

      Asiantuntija luonnehtii Keskisarjaa Trumpin ajan Turhapuroksi, joka ärsyttää kokoomusta. – Keskisarjan känni-imago j
      Maailman menoa
      59
      5815
    8. Stubb jo paljon tunnetumpi ja arvostetumpi maailmalla, kuin Marin koskaan

      Stubb tekee sitä työtä mitä pitää, hän ei koreile vaatteilla eikä ole baareissa räkäposkella kuten Marin. Marininhan pit
      Maailman menoa
      94
      4861
    9. Oikeistohallitusten aikaan saannokset.

      Holkerin touhujen seurauksena lama. Aho jatkoi tuhoa osaamattomuudellaan. Katainen ja alkoi talouden alamäki. Sipilä ja
      Maailman menoa
      15
      3951
    10. Pelle Miljoona, 70, saa harvinaista taiteilijaeläkettä - Tämän suuruinen eläke on kuussa!

      Pelle Miljoona on kyllä symppis! Peace! Suomen punk-konkari Pelle Miljoona on yksi syksyn Vain elämää -kauden artisteist
      Vain elämää
      57
      1521
    Aihe