Löytyisiköhän täältä ratkaisua.

Differentiaaliyhtälö

Elikkäs olisi tällainen diffis:

u*u''-2(u')^2=0

Olen kokeillut sijoittamista, Laplacen muunnosta ja netistä etsinyt mut ei ole onnannut. Epätoivo iskee kohta :).

Kiitos etukäteen jos ratkaisu löytyy.

16

124

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Laskee,

      Villi arvaus (nyt ei jaksa ajatella...), voi olla väärinkin.

      u(x) = A / (B x)

    • differentiaaliyhtälö

      Sehän tuli kuin apteekin hyllyltä. Kiitos.

      Mitähän mä oikein olen säätänyt kun tollasia 1/x:iä olen sijoitellut ja en mukamas ole saanut oikein. Anyways, kiitos toistamiseen ja näkemiin... jatkan harjoituksia.

    • 14+4

      tuo ratkaistaan sijoituksella du/dx = u´= p, ja u´´=dp/dx=p*dp/du. Tuosta irtoaa p, ja sitten tiedosta du/dx=p, irtoaa u.

    • Differentiaaliyhtälö

      Olis pitänyt heti tänne kirjoittaa.

      En hoksannut tota ketjusääntöä aikaisemmin sijoitellessa.

      Kuten sanoit:

      u'=p
      u''=p'=dp/du du/dx

      • 9+12

        Missä muuten törmäsit tähän tehtävään?


      • differentiaaliyhtälö
        9+12 kirjoitti:

        Missä muuten törmäsit tähän tehtävään?

        Ihan omiani laskeskelen. En viitsi edes sanoa mitä yritän, pitäisitte hulluna :D. Keskustelupalstoilla liikkuu vaikka minkälaista kaikenteorian kehittelijää (laskuni eivät liity kaikenteoriaan) jotka suoltavat tuubaa ilman minkäänlaisia todisteita. En halua kuulua tähän joukkoon ja jos jotain väitän, asian pitää olla laskettu, haudattu maahan pari kertaa, kaivettu ylös, laskettu uudelleen, tarkastettu, tarkastettu uudelleen jne.

        Olen realisti, luultavasti en saa mitään järkevää tulosta aikaiseksi tai se ei sovi yhteen havaintojen kanssa joten. Mut eihän sitä koskaan tiedä.

        Yleensä törmäilen vain 1. asteen diffiksiin mut nyt en voinut välttää tällaista joten sormi suuhunhan siinä meni. Mut nyt on työkalut ratkaista samankaltaisia ongelmia joita luultavasti tulee vastaan.


    • Ehdottaisin suoraviivaista ratkaisua (ilman arvailuja) tähän tyyliin:

      uu''-2(u')^2 = 0
      uu'' = 2(u')^2 (nyt jaetaan puolittain tekijällä uu', joka olet. tark. alueessa nollasta eroavaksi)
      u''/u' = 2u'/u
      ln(Abs(u')) = 2 ln(Abs(u)) c_1 (otetaan puolittain eksponenttifunktio)
      u' = c_2 u^2
      u'/u^2 = c_2 (nyt integroidaan puolittain)
      -u^(-1) = c_2 x c_3
      u = -1/(c_2 x c_3)

      Yksityiskohtia voi toki täsmentää ja laskuvaiheita perustella paremmin. Vakioiden valinnat selviävät laskuvaiheista.

      • 19+6

        Eikö tuossa alussa nyt pitäisi todeta, että yhtälöllä on ratkaisu u= vakio, ja jos sitten lisäksi haetaan toista ratkaisua, jossa u ei ole vakio, niin yhtälö voidaan jakaa uu´:lla jne..
        Sitten siinä ilmeisesti on suoritettu jonkinlainen implisiittinen integrointi
        u''/u' = 2u'/u jälkeen, vai kuinka ?
        Lopussa pitäisi kai todeta, että c2 ei saa olla 0, koska seurauksena olisi u =vakio ja nollalla jakaminen.
        Tämä on kyllä mielenkiintoinen ratkaisutapa, sopiikohan johonkin muuhunkin diff.yhtälöön, vai onko täsmäratkaisu tälle ?


    • Wolfram alpha on keksitty, ja muitakin softia löytyy:

      http://m.wolframalpha.com/input/?i=y*y''-2*(y')^2=0&x=2&y=12

      Vastaus on tosiaankin u(x) = c2/(c1 x).

      Siinä tuli samalla luokituskin, eli toisen asteen epälineaarinen differentiaaliyhtälö, tuurilla sen voi näemmä ratkaista suljetussa muodossa. Kannattanee nyt ainakin aluksi oppia luokittelemaan differentiaaliyhtälönsä, niin tietää mitä on edessä. Lineaariset differentiaaliyhtälöt ovat yleensä melkoisen epäkiinnostavia yksinkertaisten ratkaisujensa puolesta, epälineaariset ovat taas arvaattomia, ja siksi kiinnostavampia.

      • aeija

        Ei pääse standardiversiolla näkemään kuinka on ratkaistu, joten laitan oman tekeleeni tähän: http://aijaa.com/Pt9yCV.
        Tämä on kyllä minun matemaattisen ymmärrykseni ylärajoilla....joten vastuu jää lukijalle


      • aeija
        aeija kirjoitti:

        Ei pääse standardiversiolla näkemään kuinka on ratkaistu, joten laitan oman tekeleeni tähän: http://aijaa.com/Pt9yCV.
        Tämä on kyllä minun matemaattisen ymmärrykseni ylärajoilla....joten vastuu jää lukijalle

        vaihdoin muuttujan u=y, mutta jos tämä joku virtausopillinen jutska on, niin ei olisi pitänyt


    • Tuon nollasta eroavan ratkaisun (minun ja muiden esittämän) voi kirjoittaa muotoon
      u(x) = A/(x-x_0), kun xx_0,
      missä vakiot A, B ja x_0 voidaan valita toisistaan riippumatta.

      Vakio x_0 määrittää epäjatkuvuuskohdan.

      Ainoa sellainen ratkaisu, joka pätee koko reaalilukualueessa, on siis u(x)=0 kaikilla x.

      Tehtävän ratkaiseminen ei edellytä mitään sellaisia tietoja, jotka ylittäisivät pitkän matematiikan kurssisisällöt. Se voisi siis esiintyä ylioppilaskirjoituksissa. Olisi mielenkiintoista tietää, miten ylioppilastutkintolautakunta pisteyttäisi sellaisen vastauksen, jossa ainoaksi (koko reaalilukualueessa päteväksi) ratkaisuksi tarjottaisiin perustellen tuota vakioratkaisua u(x)=0.

      • Tuskin...

        "Se voisi siis esiintyä ylioppilaskirjoituksissa"

        Differentiaaliyhtälöitä ei varmasti esiinny ylioppilaskirjoituksissa edes tähtitehtävissä.


      • Tuskin... kirjoitti:

        "Se voisi siis esiintyä ylioppilaskirjoituksissa"

        Differentiaaliyhtälöitä ei varmasti esiinny ylioppilaskirjoituksissa edes tähtitehtävissä.

        Tämä ei pidä paikkaansa, niitä on esiintynyt esim. 70/80-luvulla ylioppilaskirjoituksissa, sekä myös 00-luvulla. Tietysti lähinnä vain pitkässä matematiikassa. Tehtävät ovat yleensä olleet separoituvia ensimmäisen asteen differentiaaliyhtälöitä. Näistä tulee lopulta yksinkertaisia integrointitehtäviä alkuarvoineen.


      • a-s-h
        m36-intj kirjoitti:

        Tämä ei pidä paikkaansa, niitä on esiintynyt esim. 70/80-luvulla ylioppilaskirjoituksissa, sekä myös 00-luvulla. Tietysti lähinnä vain pitkässä matematiikassa. Tehtävät ovat yleensä olleet separoituvia ensimmäisen asteen differentiaaliyhtälöitä. Näistä tulee lopulta yksinkertaisia integrointitehtäviä alkuarvoineen.

        Ylioppilaskirjoitukset ovat aikakautensa tuotteita. Se, että joskus on kysytty jotain, ei tarkoita, että samaa voitaisiin yhä kysyä. Nykyisen opetussuunnitelman perusteiden ollessa käytössä pidän aika epätodennäköisenä, että differentiaaliyhtälöitä esiintyisi kokeessa. Ainakaan ei voi olettaa, että keskiverto pitkän matematiikan lukija edes tietäisi, mikä diff.yhtälö edes on.


      • Tuskin...
        m36-intj kirjoitti:

        Tämä ei pidä paikkaansa, niitä on esiintynyt esim. 70/80-luvulla ylioppilaskirjoituksissa, sekä myös 00-luvulla. Tietysti lähinnä vain pitkässä matematiikassa. Tehtävät ovat yleensä olleet separoituvia ensimmäisen asteen differentiaaliyhtälöitä. Näistä tulee lopulta yksinkertaisia integrointitehtäviä alkuarvoineen.

        Tarkoitan siis, että niitä ei varmasti esiinny nykyisissä ylioppilaskirjoituksissa.

        Tähtitehtävät tulivat kokeeseen vuonna 2007, eikä niissäkään ole ollut ainuttakaan differentiaaliyhtälöä tähän päivään mennessä. Tällä hetkellä vain harvoissa matematiikkaa painottavissa lukioissa tarjotaan kurssi differentiaaliyhtälöistä, joten käytännössä ne kuuluvat vasta yliopistomatematiikkaan.


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Porvarimediat paniikissa demareiden huiman kannatuksen vuoksi

      Piti sitten keksiä "nimettömiin lähteisiin" perustuen taas joku satu. Ovat kyllä noloja, ja unohtivat sen, että vaalit
      Maailman menoa
      58
      5574
    2. KATASTROFI - Tytti Tuppurainen itse yksi pahimmista kiusaajista!!!

      STT:n lähteiden mukaan SDP:n eduskuntaryhmän puheenjohtaja Tytti Tuppurainen on käyttäytynyt toistuvasti epäasiallisesti
      Maailman menoa
      199
      3635
    3. Huono päivä

      Tänään on ollut tosi raskas päivä töissä. Tekis mieli itkeä ja huutaa. En jaksa just nyt mitään. Minä niin haluaisin ja
      Ikävä
      18
      2438
    4. Mikä siinä on ettei persuille leikkaukset käy?

      On esitetty leikkauksia mm. haitallisiin maataloustukiin, kuin myös muihin yritystukiin. Säästöjä saataisiin lisäksi lei
      Maailman menoa
      22
      2385
    5. Puolen vuoden koeaika

      Voisi toimia meillä. Ensin pitäis selvittää "vaatimukset" puolin ja toisin, ennen kuin mitään aloittaa. Ja matalalla pro
      Ikävä
      9
      1268
    6. Huonosti.

      Oletko kohdellut kaivattuasi huonosti? Miksi?
      Ikävä
      102
      1069
    7. Juuri nyt! Tytti Tuppurainen on käyttäytynyt toistuvasti epäasiallisesti

      Ai että mä nautin, Tytti erot vireille! "Käytös on kohdistunut avustajia ja toisia kansanedustajia kohtaan, uutisoi STT
      Maailman menoa
      67
      1068
    8. Onko kaivattusi

      liian vetovoimainen seksuaalisesti?
      Ikävä
      88
      1045
    9. Rötösherra käräjillä

      Ähtäriläisyrityksen epärehellisyys oli niin suurta, että mies yhtiön takaa oli lähellä saada ehdotonta vankeutta. Vaikeu
      Ähtäri
      18
      1032
    10. Häneen rakastuminen oli sellaista

      että aina uskoi ja luotti että kyllä tästä vielä edetään jotenkin. Se olikin vain rakastuneen toiveajattelua kaikki. Ta
      Ikävä
      79
      975
    Aihe