Osaako joku selittää ortogonaalisuutta?

EnMuistaEnää

Törmäsin erästä asiaa selvittäessäni termiin ortogonaalisuus (matriisi tai funktio). Itse olen suorittanut matematiikan kursseja yliopistolla viimeksi 1970-luvun lopulla, joten tiedot ja taidot ovat ruostuneet. Otsikkoa lainaten: osaako joku selittää kohtuullisen selvästi ja ymmärrettävästi ortogonaalisuuden (sisimmän) olemuksen?

7

2523

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Kanootti3

      Ensinnäkin pohjalla pitää olla vektoriavaruus, jossa on määritelty sisätulo. Esimerkiksi R^n ja pistetulo.

      Kaksi vektoria ovat ortogonaaliset, jos niiden sisätulo on 0.

      Ortogonaalinen matriisi tarkoittaa matriisia, jonka sarakkeiden (tulkittuna vektoreiksi) väliset sisätulot ovat 0.
      Lisähuomio: ortonormaali matriisi vaatii lisäksi että joka sarakkeen pituus on 1. Pituuden neliöhän tulee sisätuloavaruudessa vektorin sisätulosta itsensä kanssa. Siten ortonormaalius voidaan sanoa myös näin: matriisin transpoosi on sen käänteismatriisi. (Huomaa, jos kompleksiluvut on mukana kuvioissa, niin pitää ottaa myös kompleksi konjugaatti, sillä tällöin sisätulossa on myös tämä konjugointi mukana toisessa vektorissa).

      Sitten ortogonaaliuden määritelmään funktioille.
      Funktiot muodostavat vektoriavaruuden. Tänne voidaan ottaa sisätulo (tulon integraali yli määrittelyjoukon), kun rajoitutaan sopiviin funktioihin (toisen potenssin integraali oltava äärellistä), ns. L^2 avaruus. (Taas, jos funktiot ovat kompleksiarvoisia, niin sisätuloon pitää toiseen funktioon laittaa integraalin sisällä kompleksi konjugointi.)

      En nyt tiedä osaanko sisintä olemusta selittää ainakaan paremmin kuin mitä googlamallakin löytyy, mutta tämä nyt ainakin että matriisin ortogonaalisuudesta puhuttaessa on vain yksi matriisi ja sitten yleisesti kaksi vektoria (joita funkiotkin siis ovat omassa avaruudessaan), kun puhutaan niiden keskenäisestä ortogonaaliudesta. Huom. matriisitkin muodostavat vektoriavaruuden R^{n*m}, joten myös ne voivat olla tällä jälkimmäisellä tavallakin ortogonaalisia.

      • Kanootti3

        Jos tuo yo. vaikuttaa aivan kamalalta sotkulta, niin yritän selkiyttää (OG=ortogonaali).

        Vektorit OG: sisätulo 0

        OG-Matriisi: sarakkeet keskenään ortogonaalisia

        Funktiot OG: ovat OG vektoreina (omassa sisätuloavaruudessaan)
        Mutta sisätulo pitää olla määritelty. Funktiolla tämä haluttaisiin tehdä integraalilla, joten sen täytyy supeta.


      • EnMuistaEnää

        > Ensinnäkin pohjalla pitää olla vektoriavaruus, jossa on määritelty sisätulo. Esimerkiksi R^n ja > pistetulo.

        > Kaksi vektoria ovat ortogonaaliset, jos niiden sisätulo on 0.

        > Ortogonaalinen matriisi tarkoittaa matriisia, jonka sarakkeiden (tulkittuna vektoreiksi) väliset > sisätulot ovat 0.

        Jos on vektori (x1,y1) ja toinen vektori (x2,y2), miten niiden sisätulo lasketaan? Ortogonaalisesta matriisista minulla oli haun perusteella heikko havainto. Voitko selittää vielä vähän sarakkeiden välisistä sisätuloista?


      • Kanootti3
        EnMuistaEnää kirjoitti:

        > Ensinnäkin pohjalla pitää olla vektoriavaruus, jossa on määritelty sisätulo. Esimerkiksi R^n ja > pistetulo.

        > Kaksi vektoria ovat ortogonaaliset, jos niiden sisätulo on 0.

        > Ortogonaalinen matriisi tarkoittaa matriisia, jonka sarakkeiden (tulkittuna vektoreiksi) väliset > sisätulot ovat 0.

        Jos on vektori (x1,y1) ja toinen vektori (x2,y2), miten niiden sisätulo lasketaan? Ortogonaalisesta matriisista minulla oli haun perusteella heikko havainto. Voitko selittää vielä vähän sarakkeiden välisistä sisätuloista?

        Avaruuden R^n vektoreiden (x1, y1) ja (x2, y2) välinen sisätulo on

        x1*x2 y1*y2

        eli vastaavin komponenttien tulojen summa.

        Mikäli vektorit ovat kompleksi-vektoreita eli C^n:stä, niin sitten sisätulo määritellään

        x1*konjugaatti(x2) y1*konjugaatti(y2).

        Ortogonaalisesta matriisissa jokaisen sarakkeen pitää olla jokaisen muun sarakkeen kanssa ortogonaalinen. Eli ota eka sarake ja laske sen sisätulo tokan, kolmannen jne. kanssa. Näistä pitää tulla 0. Sitten toka sarake sisätulotetaan kolmannen, neljännen jne. Nollia pitää olla. Näin edelleen kaikki mahdolliset sarakeparit, joissa on kaksi eri saraketta, oltava OG.

        Oletko sinun vektorit ja matriisit reaalilukuarvoisia vai onko kompleksiluvut käytössä?
        (Muuten, minä kutsuisin vektoria x:ksi ja merkitsisin sen komponentteja x = (x1, x2).)


    • IteTaiteilija

      Joskus saattaa matemaatikolle olla vaikeaa sanoa matematiikan ulkopuolisella tavalla ('kielellä'), mitä jokin termi tarkoittaa. Minusta orto on yhtäkuin kohti- tai suora-, ja gooni=kulma.
      Tarkoittaa yksinkertaisesti ominaisuutta, mikä tavallisilla x-,y- (,z-...) -koordinaatistoilla analyyttisessä geometriassa ja vektorialgebrassa ns.luontaisesti on: akselit kohtisuorassa toisiaan vastaan. Ja muodostavat siten vektorisysteemin kannan. Periaatteessa kantavektorien ei tarvitsisi olla kohtisuorassa (vinollakin kulmalla syntyy kanta), mutta ortogonaalisuus helpottaa käytännön laskurutiineja kovasti.
      Ja pistetulo on luonteeltaan apukäsite ('apupalikka'), jota ilmankin lienee matematiikan historiassa tultu toimeen. On vaan laskujen kautta yhtenään vastaantuleva kuvio (lausekkeitten osa, kaava), jolle on ollut käytännöllistä antaa sitten nimi. Mm.ortogonaalisissa genreissä (taidelajeissa;) voidaan käyttää kohtisuoruuden kriteerinä ja todistamisissa. Joku voisi miettiä onko pistetuloluvulle jokin geometrinen tulkinta, mille näkisi laskematta arvion esim.piirretystä kuviosta suoraan päältä, kuten esim.kahden vektorin määräämän suunnikkaan pinta-alan.
      Koko (alkeistason) matriisilaskennan käyttökelpoisuus käsittääkseni perustuu paljon siihen, että lähtökohdaksi oletetaan nimenomaan suorakulmainen (ortogonaalinen) koordinaatisto (muuten kaavat ja teoriat olisivat kinkkisemmät;) esim.koordinaatiston kierto, peilaus, zoomaukset yms.
      Tässä ei-matemaatikon tarinaa, korjatkaa jos jotain on väärässä.

    • EnMuistaEnää

      Kiitokset kaikille vastaajille! Minulla oli hämärä käsitys, että ortogonaalisuus on jonkin sortin kohtisuoruutta. Kanootti3:lle sanoisin, että tässä vaiheessa vektorit ja matriisit ovat minulla reaalilukuarvoisia. Jos pääsen pitemmälle tässä asiassa, kysyn sitten lisäkysymyksiä.

      Vektoreiden merkinnän kopioin jostakin verkkomateriaalista. Toivottavasti asia ymmärrettiin oikein.

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Martinan uusi poikakaveri

      Sielläpä se sitten on. Instastoorissa pienissä speedoissa retkottaa uusin kulta Martinan kanssa. Oikein sydämiä laitettu
      Kotimaiset julkkisjuorut
      208
      3306
    2. Suomessa helteet ylittää vasta +30 astetta.

      Etelä-Euroopassa on mitattu yli +40 asteen lämpötiloja. Lähi-Idässä +50 on ylitetty useasti Lämpöennätykset rikkoutuva
      Maailman menoa
      239
      1658
    3. Laita mulle viesti!!

      Laita viesti mesen (Facebook) kautta. Haluan keskustella mutta sinun ehdoilla en halua häiriköidä tms. Yhä välitän sinus
      Ikävä
      97
      1513
    4. Millaisessa tilanteessa olisit toiminut toisin

      Jos saisit yhden mahdollisuuden toimia toisin?
      Ikävä
      92
      1419
    5. Vanhemmalle naiselle

      alkuperäiseltä kirjoittajalta. On olemassa myös se toinen joka tarkoituksella käyttää samaa otsikkoa. Ihan sama kunhan e
      Ikävä
      46
      1354
    6. Fazer perustaa 400 miljoonan suklaatehtaan Lahteen

      No eipä ihme miksi ovat kolminkertaistaneen suklaalevyjensä hinnan. Nehän on alkaneet keräämään rahaa tehdasta varten.
      Maailman menoa
      160
      1286
    7. Ajattelen sinua tänäkin iltana

      Olet huippuihana❤️ Ajattelen sinua jatkuvasti. Toivottavasti tapaamme pian. En malttaisi odottaa, mutta odotan kuitenkin
      Ikävä
      12
      1218
    8. Ökyrikkaat Fazerit saivat 20 MILJOONAA veronmaksajien varallisuutta!

      "Yle uutisoi viime viikolla, että Business Finland on myöntänyt Fazerille noin 20 miljoonaa euroa investointitukea. Faze
      Maailman menoa
      123
      1039
    9. Miehelle...

      Oliko kaikki mökötus sen arvoista? Ei mukavalta tuntunut, kun aloit hiljaisesti osoittaa mieltä ja kohtelit välinpitämät
      Ikävä
      89
      942
    10. Tuntuu liian hankalalta

      Lähettää sulle viesti. Tarvitsen apuasi ottaa koppi tilanteesta. Miehelle meni.
      Ikävä
      55
      872
    Aihe