Verkon yleisin "aste-vektori"

Kanootti3

Muodostetaan suuntaamaton ja yksinkertainen verkko viiden solmun ({1, 2, 3, 4, 5}) välille heittämällä lanttia jokaiselle mahdolliselle kaarelle (näitähän on C(5, 2) = 10 kpl). Eli todennäköisyydellä 1/2 otetaan kukin kaari {i, j} mukaan verkkoon.

Kun nyt tälle verkolle lasketaan aste-vektori, jossa indeksissä k (lähtee 0:sta ja menee 4:ään) on verkon astetta k olevien solmujen lukumäärä, niin mitä vektoria veikkaisitte kaikkein todennäköisimmäksi

a) [5,0,0,0,0]
b) [1,1,2,1,0]
c) [3,2,0,0,0]
d) [0,4,1,0,0]
e) [0,1,3,1,0]
f) [0,0,2,2,1]

10

143

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Kanootti3

      Kysymys tietenkin yleistyy n:lle solmulle.

    • laskee

      Kerro aste-vektorin määritwelmä. on uusi käsite minulle.

      • Kanootti3

        Se on siis vektori
        (n_0, n_1, n_2, n_3, n_4),
        missä n_k = verkon astetta k olevien solmujen lukumäärä.
        (Kun siis verkossa on 5 solmua, yleisemmin N:lle solmulle tietysti (n_0, n_1, ..., n_{N-1}).)

        Tässä vielä esimerkkikuva: https://aijaa.com/mMdiUR

        En tiedä onko tämä mikään yleinen käsite tai onko sille tunnetumpi nimi, mutta keksin tuollaisen itse.


      • Kanootti3
        Kanootti3 kirjoitti:

        Se on siis vektori
        (n_0, n_1, n_2, n_3, n_4),
        missä n_k = verkon astetta k olevien solmujen lukumäärä.
        (Kun siis verkossa on 5 solmua, yleisemmin N:lle solmulle tietysti (n_0, n_1, ..., n_{N-1}).)

        Tässä vielä esimerkkikuva: https://aijaa.com/mMdiUR

        En tiedä onko tämä mikään yleinen käsite tai onko sille tunnetumpi nimi, mutta keksin tuollaisen itse.

        Nyt löytyikin melkein vastaava: http://mathworld.wolfram.com/DegreeSequence.html

        Mutta "aste-vektoriin" on siis laskettu yhteen kaikki "degree sequence":ssä esiintyvät asteet ja pistetty kukin lukumäärä sille kuuluvaan indeksiin.

        Esim. aste-vektori [0,4,1,0,0] vastaa siis degree sequenceä {2,1,1,1,1}.


    • laskee

      e) [0,1,3,1,0] on varmaankin tuplatodennäköisyys kuin (0,1,1,3,0), ((0,3,1,1,0), (0,2,2,1,0), (0,2,1,2,0) ja (0,1,2,2,0). sitten (0,2,3,0,0) ja (0,0,3,2,0) menee johonkin noiden väliin.

    • laskee

      Toten vielä, että listallasi oli noita grade nollie ja grede nelosia, joiden todennäköisyyden on oltava hyvin pieni. Esom tuo a) [5,0,0,0,0] vaatii tn:n, että kymmenellä kolikonheitolla saat kaikilla kruunan.

    • Kanootti3

      Tässä olisi kuinka monta verkkoa kullekin astevektorille on:

      [5,0,0,0,0]: 1
      [0,0,0,0,5]: 1
      [1,4,0,0,0]: 6
      [1,0,0,4,0]: 6
      [0,0,5,0,0]: 8
      [0,0,0,2,3]: 10
      [3,2,0,0,0]: 10
      [0,4,0,0,1]: 11
      [0,0,3,0,2]: 12
      [1,0,4,0,0]: 12
      [0,0,0,4,1]: 14
      [2,0,3,0,0]: 15
      [0,0,4,0,1]: 15
      [0,4,1,0,0]: 16
      [0,1,0,3,1]: 22
      [0,0,1,4,0]: 26
      [0,0,1,2,2]: 31
      [1,3,0,1,0]: 35
      [1,0,2,2,0]: 37
      [2,2,1,0,0]: 39
      [0,2,2,0,1]: 43
      [0,2,3,0,0]: 47
      [1,2,2,0,0]: 54
      [0,1,1,3,0]: 58
      [0,0,3,2,0]: 58
      [0,3,1,1,0]: 60
      [0,0,2,2,1]: 60
      [0,2,1,2,0]: 66
      [0,1,2,1,1]: 73
      [1,1,2,1,0]: 80
      [0,1,3,1,0]: 98

      Eli aivain oikein, voittaja on e-kohta!
      Todennäköisyydethän näistä saa jakamalla 2^10:llä, sillä jokaisen tietyn verkon todennäköisyys on sama (1/2^10).
      Nämä on ihan vaan brute-forcella saatu käymällä läpi kaikki verkot. En tiedä onko tähän jotain teoriaa olemassa...

      Kuudelle solmulle paras on vektori [0,1,3,1,1,0], jollaisia on 1550 verkkoa.

    • laskee

      Pikatarkistuksena ristiriitainen huomio lukumääristä. Laskelmassasi [1,4,0,0,0]: 6
      Mutta eikö [1,4,0,0,0] synny kaikilla seuraavilla kahden polun yhdistelmillä?
      [2,5] [3,4]
      [2,4] [3,5]
      [2,3] [4,5]
      [1,5] [3,4]
      [1,5] [2,4]
      [1,5] [2,3]
      [1,4] [3,5]
      [1,4] [2,5]
      [1,4] [2,3]
      [1,3] [4,5]
      [1,3] [2,5]
      [1,3] [2,4]
      [1,2] [4,5]
      [1,2] [3,5]
      [1,2] [3,4]
      Näitä on enemmän kuin tuo 6 kpl.

      • Kanootti3

        Toden totta, mulla oli jäänyt bugi ohjelmaan (kun muodostin verkon binaariluvusta, niin unohtui laittaa nollia siihen eteen (vaikka olin tuonkin funktion jo tehnyt mutta unohtui vain laittaa parametri halutulle pituudelle mukaan :D))

        Uudet lukumäärät (toivottavasti oikeat tällä kertaa; ainakin tuo [1,4,0,0,0] antaa 15)

        [5,0,0,0,0]: 1
        [0,0,0,0,5]: 1
        [1,0,0,4,0]: 5
        [0,4,0,0,1]: 5
        [2,0,3,0,0]: 10
        [3,2,0,0,0]: 10
        [0,0,3,0,2]: 10
        [0,0,0,2,3]: 10
        [0,0,5,0,0]: 12
        [1,4,0,0,0]: 15
        [0,0,0,4,1]: 15
        [1,0,4,0,0]: 15
        [0,0,4,0,1]: 15
        [1,3,0,1,0]: 20
        [0,1,0,3,1]: 20
        [2,2,1,0,0]: 30
        [1,0,2,2,0]: 30
        [0,4,1,0,0]: 30
        [0,2,2,0,1]: 30
        [0,0,1,4,0]: 30
        [0,0,1,2,2]: 30
        [0,2,1,2,0]: 60
        [1,2,2,0,0]: 60
        [0,3,1,1,0]: 60
        [0,1,2,1,1]: 60
        [0,0,2,2,1]: 60
        [0,1,1,3,0]: 60
        [1,1,2,1,0]: 60
        [0,0,3,2,0]: 70
        [0,2,3,0,0]: 70
        [0,1,3,1,0]: 120

        No, näistähän tuli paljon "siistimmät" luvut.
        Ja kuudelle solmulle voittajat onkin
        [0,1,2,3,0,0]: 1620
        [0,0,3,2,1,0]: 1620

        Nyt kun sitä miettii, niin noissa edellisissä luvuissa ei ollutkaan sellaista symmetriaa minkä olettaisi tulevan (kun kuitenkin jokaiselle verkolle on mukana komplementtiverkko, no en nyt osaa sitä tarkemmin pähkäillä...).
        Mutta onko näille jotain kaavaa olemassa?


    • laskee

      Koska uo voi laskea ei-iteratiivilla algoritmillai ja sellaisen algoritmin voi purkaa kaavaksi, kaava on olemassa. Taitaa vain sisältää sekopäisen määrän indeksejä.

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Nasima löi Jussille luun kurkkuun

      Nasima kertoi ettei Jussi sovi puhemieheksi, koska sallii rasismin. Mihin toimiin perussuomalaiset ryhtyvät? Kuka nouse
      Maailman menoa
      520
      8836
    2. Razmyar on säälittävä - puhemiehellä ei ole mitään syytä ottaa kantaa tähän "silmäkohuun"

      jonka toimittajat sai aikaan. Asia ei kuulu puhemiehelle millään lailla. Razmyar haluaa taas vaan huomiota. Mutta jos r
      Maailman menoa
      155
      6096
    3. Miten Eerolan silmäkuvat voivat levitä muutamassa tunnissa ympäri maailmaa?

      Seuraako koko maailma persujen ja erityisesti Eerolan somea reaaliajassa? Edes kansanedustajan itsemurha eduskuntatalos
      Maailman menoa
      356
      5133
    4. Siviilipalvelusmies Halla-aho normalisoi rasismin perussuomalaisissa

      SMP:n tuhkille perustettu puolue ei ollut ihmisiä vastaan, vaan instituutiokriittinen. "Missä EU - siellä ongelma", oli
      Perussuomalaiset
      66
      4729
    5. Suomalaisilta vaaditaan valtavasti suvaitsevaisuutta - miksi sitä ei vaadita muslimeilta

      Suomalaisilta vaaditaan kaikkea, pitää olla suvaitsevainen ja hyväksyä vieraiden tavat, rasisti ei saa olla jne. Miksi s
      Maailman menoa
      98
      4331
    6. Juuri Suomen valtamedian toimittajat teki "silmävääntelystä" sen kohun

      ja ilmeisesti ottivat yhteyttä myös ulkomaisiin medioihin, että katsokaas tätä. Mutta Japanin medioissa on asiaan suhta
      Maailman menoa
      166
      4043
    7. SDP:n kansanedustaja Marko Asell: Suomen myönnettävä maahanmuuton ongelmat

      Hänen mielestään Suomen pitää pyrkiä rajoittamaan jyrkästi turvapaikanhakijoiden pääsyä maahan ja hän arvioi, että maaha
      Maailman menoa
      184
      3912
    8. Sinun ja kaivatun nimikirjaimet

      Mitkä ne on ? Meillä H❤️M 👩‍❤️‍👩
      Ikävä
      91
      1838
    9. Onko sinulla ja kaivatulla

      joku yhteinen tärkeä paikka?
      Ikävä
      103
      1384
    10. sä oot ehkä

      maailman omituisin tyyppi
      Ikävä
      47
      949
    Aihe