Verkon yleisin "aste-vektori"

Kanootti3

Muodostetaan suuntaamaton ja yksinkertainen verkko viiden solmun ({1, 2, 3, 4, 5}) välille heittämällä lanttia jokaiselle mahdolliselle kaarelle (näitähän on C(5, 2) = 10 kpl). Eli todennäköisyydellä 1/2 otetaan kukin kaari {i, j} mukaan verkkoon.

Kun nyt tälle verkolle lasketaan aste-vektori, jossa indeksissä k (lähtee 0:sta ja menee 4:ään) on verkon astetta k olevien solmujen lukumäärä, niin mitä vektoria veikkaisitte kaikkein todennäköisimmäksi

a) [5,0,0,0,0]
b) [1,1,2,1,0]
c) [3,2,0,0,0]
d) [0,4,1,0,0]
e) [0,1,3,1,0]
f) [0,0,2,2,1]

10

146

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Kanootti3

      Kysymys tietenkin yleistyy n:lle solmulle.

    • laskee

      Kerro aste-vektorin määritwelmä. on uusi käsite minulle.

      • Kanootti3

        Se on siis vektori
        (n_0, n_1, n_2, n_3, n_4),
        missä n_k = verkon astetta k olevien solmujen lukumäärä.
        (Kun siis verkossa on 5 solmua, yleisemmin N:lle solmulle tietysti (n_0, n_1, ..., n_{N-1}).)

        Tässä vielä esimerkkikuva: https://aijaa.com/mMdiUR

        En tiedä onko tämä mikään yleinen käsite tai onko sille tunnetumpi nimi, mutta keksin tuollaisen itse.


      • Kanootti3
        Kanootti3 kirjoitti:

        Se on siis vektori
        (n_0, n_1, n_2, n_3, n_4),
        missä n_k = verkon astetta k olevien solmujen lukumäärä.
        (Kun siis verkossa on 5 solmua, yleisemmin N:lle solmulle tietysti (n_0, n_1, ..., n_{N-1}).)

        Tässä vielä esimerkkikuva: https://aijaa.com/mMdiUR

        En tiedä onko tämä mikään yleinen käsite tai onko sille tunnetumpi nimi, mutta keksin tuollaisen itse.

        Nyt löytyikin melkein vastaava: http://mathworld.wolfram.com/DegreeSequence.html

        Mutta "aste-vektoriin" on siis laskettu yhteen kaikki "degree sequence":ssä esiintyvät asteet ja pistetty kukin lukumäärä sille kuuluvaan indeksiin.

        Esim. aste-vektori [0,4,1,0,0] vastaa siis degree sequenceä {2,1,1,1,1}.


    • laskee

      e) [0,1,3,1,0] on varmaankin tuplatodennäköisyys kuin (0,1,1,3,0), ((0,3,1,1,0), (0,2,2,1,0), (0,2,1,2,0) ja (0,1,2,2,0). sitten (0,2,3,0,0) ja (0,0,3,2,0) menee johonkin noiden väliin.

    • laskee

      Toten vielä, että listallasi oli noita grade nollie ja grede nelosia, joiden todennäköisyyden on oltava hyvin pieni. Esom tuo a) [5,0,0,0,0] vaatii tn:n, että kymmenellä kolikonheitolla saat kaikilla kruunan.

    • Kanootti3

      Tässä olisi kuinka monta verkkoa kullekin astevektorille on:

      [5,0,0,0,0]: 1
      [0,0,0,0,5]: 1
      [1,4,0,0,0]: 6
      [1,0,0,4,0]: 6
      [0,0,5,0,0]: 8
      [0,0,0,2,3]: 10
      [3,2,0,0,0]: 10
      [0,4,0,0,1]: 11
      [0,0,3,0,2]: 12
      [1,0,4,0,0]: 12
      [0,0,0,4,1]: 14
      [2,0,3,0,0]: 15
      [0,0,4,0,1]: 15
      [0,4,1,0,0]: 16
      [0,1,0,3,1]: 22
      [0,0,1,4,0]: 26
      [0,0,1,2,2]: 31
      [1,3,0,1,0]: 35
      [1,0,2,2,0]: 37
      [2,2,1,0,0]: 39
      [0,2,2,0,1]: 43
      [0,2,3,0,0]: 47
      [1,2,2,0,0]: 54
      [0,1,1,3,0]: 58
      [0,0,3,2,0]: 58
      [0,3,1,1,0]: 60
      [0,0,2,2,1]: 60
      [0,2,1,2,0]: 66
      [0,1,2,1,1]: 73
      [1,1,2,1,0]: 80
      [0,1,3,1,0]: 98

      Eli aivain oikein, voittaja on e-kohta!
      Todennäköisyydethän näistä saa jakamalla 2^10:llä, sillä jokaisen tietyn verkon todennäköisyys on sama (1/2^10).
      Nämä on ihan vaan brute-forcella saatu käymällä läpi kaikki verkot. En tiedä onko tähän jotain teoriaa olemassa...

      Kuudelle solmulle paras on vektori [0,1,3,1,1,0], jollaisia on 1550 verkkoa.

    • laskee

      Pikatarkistuksena ristiriitainen huomio lukumääristä. Laskelmassasi [1,4,0,0,0]: 6
      Mutta eikö [1,4,0,0,0] synny kaikilla seuraavilla kahden polun yhdistelmillä?
      [2,5] [3,4]
      [2,4] [3,5]
      [2,3] [4,5]
      [1,5] [3,4]
      [1,5] [2,4]
      [1,5] [2,3]
      [1,4] [3,5]
      [1,4] [2,5]
      [1,4] [2,3]
      [1,3] [4,5]
      [1,3] [2,5]
      [1,3] [2,4]
      [1,2] [4,5]
      [1,2] [3,5]
      [1,2] [3,4]
      Näitä on enemmän kuin tuo 6 kpl.

      • Kanootti3

        Toden totta, mulla oli jäänyt bugi ohjelmaan (kun muodostin verkon binaariluvusta, niin unohtui laittaa nollia siihen eteen (vaikka olin tuonkin funktion jo tehnyt mutta unohtui vain laittaa parametri halutulle pituudelle mukaan :D))

        Uudet lukumäärät (toivottavasti oikeat tällä kertaa; ainakin tuo [1,4,0,0,0] antaa 15)

        [5,0,0,0,0]: 1
        [0,0,0,0,5]: 1
        [1,0,0,4,0]: 5
        [0,4,0,0,1]: 5
        [2,0,3,0,0]: 10
        [3,2,0,0,0]: 10
        [0,0,3,0,2]: 10
        [0,0,0,2,3]: 10
        [0,0,5,0,0]: 12
        [1,4,0,0,0]: 15
        [0,0,0,4,1]: 15
        [1,0,4,0,0]: 15
        [0,0,4,0,1]: 15
        [1,3,0,1,0]: 20
        [0,1,0,3,1]: 20
        [2,2,1,0,0]: 30
        [1,0,2,2,0]: 30
        [0,4,1,0,0]: 30
        [0,2,2,0,1]: 30
        [0,0,1,4,0]: 30
        [0,0,1,2,2]: 30
        [0,2,1,2,0]: 60
        [1,2,2,0,0]: 60
        [0,3,1,1,0]: 60
        [0,1,2,1,1]: 60
        [0,0,2,2,1]: 60
        [0,1,1,3,0]: 60
        [1,1,2,1,0]: 60
        [0,0,3,2,0]: 70
        [0,2,3,0,0]: 70
        [0,1,3,1,0]: 120

        No, näistähän tuli paljon "siistimmät" luvut.
        Ja kuudelle solmulle voittajat onkin
        [0,1,2,3,0,0]: 1620
        [0,0,3,2,1,0]: 1620

        Nyt kun sitä miettii, niin noissa edellisissä luvuissa ei ollutkaan sellaista symmetriaa minkä olettaisi tulevan (kun kuitenkin jokaiselle verkolle on mukana komplementtiverkko, no en nyt osaa sitä tarkemmin pähkäillä...).
        Mutta onko näille jotain kaavaa olemassa?


    • laskee

      Koska uo voi laskea ei-iteratiivilla algoritmillai ja sellaisen algoritmin voi purkaa kaavaksi, kaava on olemassa. Taitaa vain sisältää sekopäisen määrän indeksejä.

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Selvästi näyttää siltä, että SDP:n kannattajat hyväksyy kiusaamisen

      ja seksuaalisen ahdistelun, kun puolueen kannatus pysyy korkealla. Mitä tämä kertoo demari-äänestäjien moraalista?
      Maailman menoa
      137
      3546
    2. Päivi Räsäsen seksipaljastus loksauttaa Katja Ståhlin leuat! Elämäni biisi kohujakso tv:ssä!

      Elämäni biisi -suosikkisarjan uusinnat ovat startanneet ja nyt vuorossa on sarjan 2. jakso v. 2019. Sinisille sohville
      Suomalaiset julkkikset
      55
      3121
    3. Muistan vuosikymmenten takaa

      Toivottavasti voit hyvin ja jaksat työssäsi. Olet upea ja erinomainen ihminen, toivon kaikkea hyvää.
      Ikävä
      12
      2584
    4. Montako mitalia Suomi saa talviolympialaisista?

      Nyt heittäkää veikkaus Suomen mitalisaldosta ja mistä lajeista metallilätkät tulevat. Oma veikkaukseni on 6 mitalia. -
      Maailman menoa
      115
      2141
    5. Voiko kaivattu olla liian vanha?

      Tai muuten huonokuntoinen...
      Ikävä
      171
      1786
    6. Kokemuksia Rehux Oy yrityksestä työpaikkana?

      Jonkin aikaa seurannut kyseistä firmaa sivusta, näyttäisi, että tälläkin hetkellä olisi peräti 3 eri roolia tai paikkaa
      Työpaikat
      31
      1346
    7. Missä näit viimeksi kaivattusi?

      Menikö kohtaaminen hyvin vai ujousko esti lähestymästä?
      Ikävä
      54
      1172
    8. IS: Riitta Väisänen kärsii ikävästä vaivasta - Vaipparalli ja 40 antibioottikuuria takana...

      71-vuotias Riitta Väisänen on kertonut tuoreista terveysongelmistaan. Väisänen on kertonut julkisuudessa jo aiemmin vaih
      Terveys
      16
      953
    9. Jos mies oikeasti haluaa sinut

      Hän ei ota riskiä että menettäisi sinut. Ei pienintäkään. Mies ei jätä vastaamatta viesteihin eikä pidä sinua epätietois
      Ikävä
      110
      923
    10. Polvinen hylkäsi Persut

      Polvinen teki ratkaisun, lähti Persujen paraati paikalta. Moni on jättänyt puolueen tavallisten kansalaisten joukosta.
      Kajaani
      158
      922
    Aihe