Ympyröiden näkymättömyys

Tasossa on n ympyrää. Jokaisen säde on 1 eivätkä ne leikkaa toisiaan. Valitaan piste P satunnaisesti joltain näistä ympyröistä (tasajaukauma, voi ajatella että ensin valitaan ympyrä s.e. jokaisella tn. 1/n tulla valituksi ja sitten kulma tasajakaumasta [0, 2pi]).

Mikä on todennäköisyys, että P:stä ei näy mikään toinen ympyrä? Näkyvyys tarkoittaa, että pisteestä on suora näköyhteys toiseen ympyrään eli voidaan piirtää jana, joka ei leikkaa mitään matkallaan vaan ainoastaan päätepisteet ovat ympyrän kaarilla. Toisin sanottuna piste X näkyy pisteestä P, jos avoin jana PX ei leikkaa mitään ympyrää. Ympyrä näkyy, jos jokin sen piste näkyy.

Sillä ei oikeastaan ole väliä puhutaanko tässä täytyistä ympyröistä (kiekoista) vai ei, sillä jos jana leikkaa kiekkoa sisältä, niin sen täytyy myös leikata ulkokuorta osuakseen toiseen ympyrään, sillä ympyrät ovat pistevieraita. Eikä sillä ole väliä näkyykö ympyrä omista pisteistään, sillä puhutaan joka tapauksessa muiden ympyröiden näkymisestä. (Ympyrän sisäpuolelle ei kannata ikinä lähteä, sillä joutuu kuitenkin leikkaamaan sitä ulkokuorta jossakin toisessa pisteessä.)

Yleistyksiä:
3-ulotteinen versio (ja mikseipä useampikin ulotteinenkin)
eri säteisiä ympyröitä

4

<50

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Ajattelit varmaan että taso ei ole ääretön ja että pisteen valitseminen ympyrältä tarkoittaa pisteen valitsemista ympyrän kehältä.

      Jos taso olisi äärettömän suuri niin keskimäärin ympyrät olisivat äärettömän kaukana toisistaan ja todennäköisyys sille että pisteestä ulospäin ympyrän kehältä näkyvään puoliavaruuteen piirretyn puolisuoran tielle sattuu toinen ympyrä olisi nolla.

      • Ympyröiden sijaintia ei arvota satunnaisesti vaan se on jokin ennalta kiinnitetty. Siitä ei sanottu mitään, koska... noh, testatkaa, niin ehkä huomaatte. :D

        Eikä myöskään siis arvota mitään suoran suuntaa johon P:stä lähdetään, vaan kysytään että näkyykö P:stä mikään toinen ympyrä eli onko olemassa sellaista suuntaa. Jos ei, niin sitten P on suotuisa. Jos P:stä näkyy joku toinen ympyrä, niin P on epäsuotuisa. Esim. jos meillä on kaksi ympyrää, niin niiden "toisiaan kohti olevilla puolilla" on näköyhteys keskenään sijaitsipa ympyrät kuinka kaukana toisistaan tahansa.


    • Tässä ratkaisuehdotus: https://membolicsythod.home.blog/2019/07/02/ympyrat-tasossa/

      Onhan siinä vielä hommaa perustella jokainen noista todistuksen vaiheista mutta mielestäni ne pitäisi jokainen olla kyllä ihan oikein(?)

      Kolmedeelle (eli kaksdee pallon pinnoille) olisi Gauss-Bonnet, mitenkäs korkeammissa ulottuvuuksissa? Taidetaan sielläkin saada sama todennäköisyys 1/n?

      • Anonyymi

        Merkitään konveksiverhoa C_0:lla ja sen reunaa C:llä ja ympyröiden (ulko-)tangenttipisteiden joukkoa T:llä.

        Väite:
        Olkoon p piste ympyrältä Y_p. Tällöin
        p ∈ C\T ⇔ p:stä ei näy mikään toinen ympyrä

        Todistus:

        "→":
        Olkoon p ∈ C\T. Tehdään antiteesi: p:stä näkyykin ympyrän Y_q piste q. Tällöin, koska p ∉ T, niin myös ympyrän Y_p p:n jokin avoin ympäristö U (eli osa Y_p:n kaarta, jossa p on sisäpisteenä) näkyy q:sta (jana pq ei voi olla tangenttijana, joten siinä on "kääntämisen varaa", tai oikeastaan: q voidaan valita s.e. se ei ole myöskään tangenttipiste koska p:n puolella on sitä kääntämisen varaa.). Mutta tämä tarkoittaa, että p on C:n sisäpiste, sillä kaikki janat qr, r ∈ U sisältyvät konveksiverhoon C_0 ja lisäksi tietenkin Y_p ⊆ C. Ristiriita oletuksen p ∈ C kanssa.

        "←":
        Oletetaan, että pisteestä p ei näy mikään toinen ympyrä. Tällöin koko ympyrälle Y_p pisteeseen p piirretyn tangentin ulkopuoli (se puoli, jolla ympyrä ei ole) on ympyrävapaa, muutenhan sieltä löytyisi näkyvä ympyrä. Kutsutaan tätä avointa, ympyrävapaata puolitasoa H:ksi. Koska sen komplementti H^C on konveksi ja C ⊆ H^C, niin H:n täytyy sisältyä C_0^C:iin (sillä konveksiverho on pienin konveksi joukko, joka sisältää joukon). Mutta piste p on H:n reunalla, joten sen täytyy olla myös C_0:n reunalla (muista: p on C_0:n piste). Lisäksi ei voi olla p ∈ T, sillä muuten siitä näkyisi joku toinen ympyrä (joko se kenen kanssa tangenttirelaatio on tai sitten joku joka tulee siihen tielle estämään tämän näkyvyyden).


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Mies mitä ajattelet naisista?

      Kerro mitä ajatuksia nousee. Mitä naiset sinulle merkitsee? Sana on vapaa.
      Ikävä
      138
      4816
    2. Järkyttävä tieto Purrasta

      Purra tapasi nykyisen miehensä täällä. Suomi24:ssä! Tulipa likainen olo. Nyt loppuu tämä roikkuminen tällä palstalla.
      Maailman menoa
      107
      2556
    3. Rakastan sua

      Tiedäthän sen ❤️😢
      Ikävä
      66
      1623
    4. Näin asia on

      Tiedän ettei hän koskaan aio lähestyä minua eikä niin ole koskaan aikonutkaan, eikä lähesty ja enkä minä enää tee sitä k
      Ikävä
      11
      1354
    5. 58
      1330
    6. Mikseivät toimittajat vaadi Orpoa vastuuseen lupauksistaan

      Missä ne 100.000 uutta työpaikkaa muka ovat? Eivät yhtään missään. Näin sitä Suomessa voi puhua ja luvata mitä sattuu. E
      Maailman menoa
      158
      1221
    7. Toinen toista

      Hyvää sunnuntai huomenta susi rinssiltä 🤴🏼☕❄️⚜️❤️
      Ikävä
      261
      1177
    8. Aavistan tai oikeastaan

      tiedän, että olet hulluna minuun. Mutta ilman kommunikointia, tällaisenaan tilanne ja kaikki draama ovat mun näkökulmast
      Ikävä
      34
      907
    9. Ajattele, miten häviävän pieni

      todennäköisyys on sille, että kaksi tiettyä ihmistä yli viidestä miljoonasta sattuvat tulemaan samalle palstalle ikävöim
      Ikävä
      49
      896
    10. Pieni vinkki miehelle

      Jos haluat, että tapahtuu jotain edistystä, niin kannattaa suoda ajatus sille, että miltä toimintasi näyttää mulle päin.
      Ikävä
      41
      859
    Aihe