Ympyröiden näkymättömyys

Tasossa on n ympyrää. Jokaisen säde on 1 eivätkä ne leikkaa toisiaan. Valitaan piste P satunnaisesti joltain näistä ympyröistä (tasajaukauma, voi ajatella että ensin valitaan ympyrä s.e. jokaisella tn. 1/n tulla valituksi ja sitten kulma tasajakaumasta [0, 2pi]).

Mikä on todennäköisyys, että P:stä ei näy mikään toinen ympyrä? Näkyvyys tarkoittaa, että pisteestä on suora näköyhteys toiseen ympyrään eli voidaan piirtää jana, joka ei leikkaa mitään matkallaan vaan ainoastaan päätepisteet ovat ympyrän kaarilla. Toisin sanottuna piste X näkyy pisteestä P, jos avoin jana PX ei leikkaa mitään ympyrää. Ympyrä näkyy, jos jokin sen piste näkyy.

Sillä ei oikeastaan ole väliä puhutaanko tässä täytyistä ympyröistä (kiekoista) vai ei, sillä jos jana leikkaa kiekkoa sisältä, niin sen täytyy myös leikata ulkokuorta osuakseen toiseen ympyrään, sillä ympyrät ovat pistevieraita. Eikä sillä ole väliä näkyykö ympyrä omista pisteistään, sillä puhutaan joka tapauksessa muiden ympyröiden näkymisestä. (Ympyrän sisäpuolelle ei kannata ikinä lähteä, sillä joutuu kuitenkin leikkaamaan sitä ulkokuorta jossakin toisessa pisteessä.)

Yleistyksiä:
3-ulotteinen versio (ja mikseipä useampikin ulotteinenkin)
eri säteisiä ympyröitä

4

<50

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Ajattelit varmaan että taso ei ole ääretön ja että pisteen valitseminen ympyrältä tarkoittaa pisteen valitsemista ympyrän kehältä.

      Jos taso olisi äärettömän suuri niin keskimäärin ympyrät olisivat äärettömän kaukana toisistaan ja todennäköisyys sille että pisteestä ulospäin ympyrän kehältä näkyvään puoliavaruuteen piirretyn puolisuoran tielle sattuu toinen ympyrä olisi nolla.

      • Ympyröiden sijaintia ei arvota satunnaisesti vaan se on jokin ennalta kiinnitetty. Siitä ei sanottu mitään, koska... noh, testatkaa, niin ehkä huomaatte. :D

        Eikä myöskään siis arvota mitään suoran suuntaa johon P:stä lähdetään, vaan kysytään että näkyykö P:stä mikään toinen ympyrä eli onko olemassa sellaista suuntaa. Jos ei, niin sitten P on suotuisa. Jos P:stä näkyy joku toinen ympyrä, niin P on epäsuotuisa. Esim. jos meillä on kaksi ympyrää, niin niiden "toisiaan kohti olevilla puolilla" on näköyhteys keskenään sijaitsipa ympyrät kuinka kaukana toisistaan tahansa.


    • Tässä ratkaisuehdotus: https://membolicsythod.home.blog/2019/07/02/ympyrat-tasossa/

      Onhan siinä vielä hommaa perustella jokainen noista todistuksen vaiheista mutta mielestäni ne pitäisi jokainen olla kyllä ihan oikein(?)

      Kolmedeelle (eli kaksdee pallon pinnoille) olisi Gauss-Bonnet, mitenkäs korkeammissa ulottuvuuksissa? Taidetaan sielläkin saada sama todennäköisyys 1/n?

      • Anonyymi

        Merkitään konveksiverhoa C_0:lla ja sen reunaa C:llä ja ympyröiden (ulko-)tangenttipisteiden joukkoa T:llä.

        Väite:
        Olkoon p piste ympyrältä Y_p. Tällöin
        p ∈ C\T ⇔ p:stä ei näy mikään toinen ympyrä

        Todistus:

        "→":
        Olkoon p ∈ C\T. Tehdään antiteesi: p:stä näkyykin ympyrän Y_q piste q. Tällöin, koska p ∉ T, niin myös ympyrän Y_p p:n jokin avoin ympäristö U (eli osa Y_p:n kaarta, jossa p on sisäpisteenä) näkyy q:sta (jana pq ei voi olla tangenttijana, joten siinä on "kääntämisen varaa", tai oikeastaan: q voidaan valita s.e. se ei ole myöskään tangenttipiste koska p:n puolella on sitä kääntämisen varaa.). Mutta tämä tarkoittaa, että p on C:n sisäpiste, sillä kaikki janat qr, r ∈ U sisältyvät konveksiverhoon C_0 ja lisäksi tietenkin Y_p ⊆ C. Ristiriita oletuksen p ∈ C kanssa.

        "←":
        Oletetaan, että pisteestä p ei näy mikään toinen ympyrä. Tällöin koko ympyrälle Y_p pisteeseen p piirretyn tangentin ulkopuoli (se puoli, jolla ympyrä ei ole) on ympyrävapaa, muutenhan sieltä löytyisi näkyvä ympyrä. Kutsutaan tätä avointa, ympyrävapaata puolitasoa H:ksi. Koska sen komplementti H^C on konveksi ja C ⊆ H^C, niin H:n täytyy sisältyä C_0^C:iin (sillä konveksiverho on pienin konveksi joukko, joka sisältää joukon). Mutta piste p on H:n reunalla, joten sen täytyy olla myös C_0:n reunalla (muista: p on C_0:n piste). Lisäksi ei voi olla p ∈ T, sillä muuten siitä näkyisi joku toinen ympyrä (joko se kenen kanssa tangenttirelaatio on tai sitten joku joka tulee siihen tielle estämään tämän näkyvyyden).


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Jens Ihlen (ex Kukka) poika todistaa oikeudessa

      10:49 "Välit ovat olemattomat" Minkälainen isäsi ja sinun välinen suhde on tällä hetkellä? "Minulla ei ole minkäännäkö
      Maailman menoa
      262
      9879
    2. K-kaupassa on mukava käydä, kun ei tarvitse katsella köyhiä

      vasemmistolaisia, joista monet myös varastavat. Mielellään maksaa vähän enemmän tuotteista K-kaupassa, jotka ovat paljon
      Maailman menoa
      187
      5612
    3. Suomeen ei kuulu ihmiset jotka ei halua kätellä toisia ihmisiä, koska tämä on vääräuskoinen

      Nainen joka ei halunnut kätellä Stubbia on selvästi ääripään muslimi, eli sitä sakkia josta niitä ongelmia koituu. Ulos
      Maailman menoa
      162
      5210
    4. PS:n Purra teki -JÄTTI-VELAT

      * * PS:n Purra teki -JÄTTI-VELAT - ! ja jätti MaksuHuolet -Kansan Maksettavaksi -! *
      Maailman menoa
      74
      4865
    5. Ootko sä nainen suuttunut

      jostain? Harmi jos tullut väärinkäsityksiä.
      Ikävä
      212
      2429
    6. Nainen, sanotaan että totuus tekee kipeää

      Ehkä mutta se voi olla myös se kaikkein kamalin asia kohdata. Kuplassa on turvallista, kun tietää vähemmän on helpompi.
      Ikävä
      12
      2269
    7. Valtio lopettaa pienituloisten perheiden kylpylälomien tukemisen

      Pienituloiset suomalaiset ovat voineet vuosikymmenten ajan hakea tuettuja lomia terveydellisin, sosiaalisin ja taloudell
      Maailman menoa
      333
      1963
    8. Menen nyt koisimaan

      Ja en ehkä palaa tänne. Asia on nyt loppuunkäsitelty ja totuus tuli ilmi
      Ikävä
      21
      1655
    9. Minkälainen auto

      Kaivatullasi on? Väri/Merkki? :)
      Ikävä
      90
      1597
    10. Kuinka rakastunut olet

      Ja kehen?
      Ikävä
      41
      1153
    Aihe