Maailman pienin luku

Anonyymi

Koska on lanka suurimmasta luvusta, niin pyhitetään ketju myös pienimmälle. Koska pienet ovat aina söpömpiä.

Onko maailman pienin luku Planckin pituus?

17

1230

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Tarkoitatko itseisarvoltaan pienintä? Siinä tapauksessa 0, koska ei ole olemassa lukua a, jolle pätisi |a|<0.

      Jos tarkotit pienimmällä itseisarvoltaan suurinta negatiivista lukua, joka on myös nimetty, niin otat suurimman nimetyn luvun ja laitat miinuksen eteen.

      Muussa tapauksessa pienintä lukua ei ole.

    • Anonyymi

      Entä maailman keskimmäisin luku? Onko se nolla vai määrittämätön?

      • Anonyymi

        Veikkaisin (ilman parempaa tietoa siis), että luonnollisille luvuille määrittelemätön, muille nolla, ja olettaen, että muiden joukkojen kuin luonnollisten lukujen joukon kohdalla, osajoukot nollan molemmin puolin ovat yhtäsuuret, arvaten näin voinee melko turvallisesti olettaa.

        Toisaalta, koska luonnollisten lukujen joukon N = { 1, 2, 3, ... } summa tiedetään (joka on itseasiassa luonnollisten lukujen joukon ulkopuolella rationaalilukujen joukosta, hauskastikin ehkä, ja pitäisi olla siten ehkä myös määrittelemätön), voisi ajatella, että keskimmäisenkin alkion järjestysnumeron saattaisi pystyä määrittelemään, ja samalla saisi myös sille arvon, koska luonnolliset luvut ovat n 1 ja >0 (joskin joskus nollakin kuuluu joukkoon), jolloin järjestysnumero on myös alkion arvo.

        Ainiin, se summa luonnollisten lukujen joukolle N = { 1, 2, 3, ..., ∞ } eli { 1 2 3 ... ∞ } on -1/12 eli -0,08333...

        Sen ratkaisi matemaatikko nimeltään Srinivasa Ramanujan.


      • Anonyymi kirjoitti:

        Veikkaisin (ilman parempaa tietoa siis), että luonnollisille luvuille määrittelemätön, muille nolla, ja olettaen, että muiden joukkojen kuin luonnollisten lukujen joukon kohdalla, osajoukot nollan molemmin puolin ovat yhtäsuuret, arvaten näin voinee melko turvallisesti olettaa.

        Toisaalta, koska luonnollisten lukujen joukon N = { 1, 2, 3, ... } summa tiedetään (joka on itseasiassa luonnollisten lukujen joukon ulkopuolella rationaalilukujen joukosta, hauskastikin ehkä, ja pitäisi olla siten ehkä myös määrittelemätön), voisi ajatella, että keskimmäisenkin alkion järjestysnumeron saattaisi pystyä määrittelemään, ja samalla saisi myös sille arvon, koska luonnolliset luvut ovat n 1 ja >0 (joskin joskus nollakin kuuluu joukkoon), jolloin järjestysnumero on myös alkion arvo.

        Ainiin, se summa luonnollisten lukujen joukolle N = { 1, 2, 3, ..., ∞ } eli { 1 2 3 ... ∞ } on -1/12 eli -0,08333...

        Sen ratkaisi matemaatikko nimeltään Srinivasa Ramanujan.

        Vähentämällä äärettömiä toisistaan pystyy osioittamaan tuolle summalle minkä tahansa ennalto määrätyn arvon eli Ramanujan ei jutuillaan olisi päässyt läpi matikankokeista.

        Tosiasia nyt vain sattuu olemaan, että laskemalla yhteen kaksi positiivista lukua tuloksena on aina positiivinen luku. Negatiiviseksi summa ei mene muuten kuin silmänkääntötempulla.


    • Anonyymi

      Voisio olla sellaine myös mikä on pienin nollaa suurempi luku.

      • Anonyymi

        Sellaista lukua ei ole olemassakaan.


    • Anonyymi

      Pienin luku on tietenkin epsilon. Sen kuuluu määritelmän mukaan olla piennempi kuin delta. Ainakin toisinaan.

      • Anonyymi

        Jos epsilon > 0, niin epsilon/2 < epsilon, joten epsilon ei voi olla pienin positiivinen luku.


      • Anonyymi

        Aina voidaan valita epsilon joka on pienempi kuin aikaisemmin esitetty ennätysepsilon, joten epsilon korjaa voiton jälleen kerran.


    • Anonyymi

      Epsilon on muuttuja miksi se

      • Anonyymi

    • Anonyymi

      Pienin luku on -sentiljoona joka on 600 nollainen luku negatiivisesti

      • Anonyymi

        Koska luvulle pitää antaa nimi on sentiljoona toisaalta ennemmin suurin kuin se potenssiin itsensä


    • Anonyymi

      Keskikimmäisin luku on 0.
      Koska ääretön ymmärretään'mikä se on, se on suurin

    • Anonyymi

      Jos kysyttäisiin minkä kokoinen on pienin rakenneosa, ei vastaus voisi olla nolla. Sen pitäisi olla nollaa suurempi, mutta voisi olla vaikka kuinka lähellä nollaa.

      Sama integraalilaskennassa. Yhteen laskettavien pitää olla nollaa suurempia. Nolla kertaa ääreton ei ole määritelty.

    • Anonyymi

      "Onko maailman pienin luku Planckin pituus?"

      Ei ole, joskin siihen liitetty arvo on yksi suhteellisen pienistä ja nykyisen fysiikan kannalta myös pienimmistä relevanteista nimetyistä arvoista ja toisaalta myös esim. fysiikan professori Max Planckin mukaan nimettyyn Planck-aikaan liitetty arvo: 5.39*10^-44 (s.) < Planck-pituuteen liitetty arvo: 1.616255(18)*10^-35 (m.), mutta relevanteimpia tässä suhteessa oikeastaan ovat sellaiset luvut, joiden määrittelyyn ei ylipäätään liity puhtaasti sopimuksenvaraisia yksiköitä, kuten noita sekunteja tai metrejä.

      Toisistaan voidaan erottaa, sopimuksen varaisuuden tai perustavanlaatuisemman määrittelytavan ja nimeämisen/nimeämättömyyden lisäksi, ainakin fysikaalisesti mielekkäät luvut tietyillä lisäoletuksilla (mm. valittu kvanttimekaniikan tulkinta ja oletettu totaalisen universumin minimimassa) sekä matemaattisesti mielekkäät luvut tietyillä lisäoletuksilla (mm. laskettavuus, yksiselitteisyyden aste määrittelyyn liittyen, raja-arvojen käyttö/käyttämättömyys sekä relevanssi matematiikan kehittämisen kannalta).

      1) Pienimmän fysikaalisesti mielekkään positiivisen luvun on perinteisesti oletettu olevan: 1/t1, jossa t1 = näkyvän universumin massaisen mustan aukon Poincare-syklin pituus ≈ 10^(10^(10^(10^2.1))) ≈≈ 10^^4.1 aikayksikköä (^^ tarkoittaa tetraatiota, joka on "kantaluvun rekursiivinen potenssiinkorotusoperaatio"). Toisaalta, jos oletetaan fysiikan professori Andrei Linden hypoteettisen ikuisen kosmisen inflaation mallin mukainen ns. totaalinen universumi, niin sen Poincare-syklin yläraja t2 ≈ 10^(10^(10^(10^(10^1.1)))) ≈≈ 10^^5.0 aikayksikköä >> t1. Kolmannekseen, jos esim. fysiikan professori Don Pagen arvioita maailmankaikkeuden minimikoosta pidetään valideina, niin t3 ≈ 10^(10^(10^(10^(10^(10^2.1))))) ≈≈ 10^^6.1 aikayksikköä >> t2, mikä tarkoittaa sitä, että noin monen aikayksikön jälkeen kukin noista järjestelmistä on tehnyt yhden ns. täyden kierroksen, s.e. sen jokaisen osan suhteet kaikkiin muihin osiin ovat taas samat kuin tuon syklin alussa, olettaen mm., että Poincare-teoreema pätee näihin järjestelmiin sovellettuna ja olettaen, että aineella ei esim. ole sellaista toistaiseksi tuntematonta hienorakennetta, joka mahdollistaisi suuremmat määrät erilaisia vaihtoehtoisia tiloja, jolloin tuota suuremmat luvut eivät siis ole fysikaalisesti mielekkäitä/tarpeellisia. t1, t2 ja t3 ovat niin suuria, että on käytännössä täysin samantekevää, käytetäänkö tässä yhteydessä aikayksikkönä Planck-aikaa tai universumin nykyistä ikää Planck-aikoina tms., koska noiden välinen magnitudiero on vain ≈ 10^56 << 10^^4 << 10^^5 << 10^^6.
      https://en.wikipedia.org/wiki/Poincaré_recurrence_theorem
      https://googology.wikia.org/wiki/Poincaré_recurrence_time

      2) Pienin matemaattisesti nykyisin mahdollisesti käyttökelpoinen ja potentiaalisesti relevantti luku lienee: 1/G, jossa G on matematiikan professori Ronald Graham:in mukaan nimetty ns. Graham:in luku, joka on esim. BEAF:lla ilmaistuna = {3,65,1,2} ja Knuth:in notaatiolla 3 (^g(63)) 3, kun G = g(64). Tuo luku 65 viittaa siihen, että G:n kuvauksessa käytettävän korkeimman tason hyperoperaattorin järjestysluku saadaan kasvattamalla tuota järjestyslukua rekursiivisesti 65-2 tasoa, aloittaen arvosta: {3,3,4} = 3^^^^3 (jossa ^^^^ tarkoittaa heksaatiota). G on siis niin suuri, että sitä ei voida esittää suoraan mielekkäästi käyttäen potensseja, tetraatiota, pentaatiota, heksaatiota tai mitään muitakaan nimettyjä hyperoperaatioita, vaan niitä siis joudutaan käyttämään rekursiivisesti hyperoperaation itsensä järjestysluvun määrittelyssäkin ja käänteisesti 1/G on tietysti niin pieni, että sama pätee siihen, mutta 1/G:tä ei taida olla nimetty. 1/G << 1/t3.
      https://en.wikipedia.org/wiki/Graham's_number

      3) Pienin matemaattisesti suhteellisen yksikäsitteisesti nykyisin, ilman raja-arvojen käyttöä, määriteltävissä oleva positiivinen luku, toisaalta lienee: 1/R, jossa R on matematiikan professori Agustin Rayo'n mukaan nimetty ns. Rayo'n luku = Rayo(10^100), jossa Rayo on Rayo-funktio ja R on Rayo'n mukaan, epäformaalisti ilmaisten, suomennettuna: "pienin positiivinen kokonaisluku, joka on suurempi kuin mikään sellainen äärellinen positiivinen kokonaisluku, joka on nimetty käyttäen ensimmäisen asteen joukko-oppia ja enintään 10^100:aa symbolia". R on suurin sellainen suhteellisen yksikäsitteisesti mielekäs nimetty äärellinen positiivinen kokonaisluku, joka on saavuttanut riittävästi yleistä huomiota, että se on noteerattu esim. Wikipedia:ssa. Esim. 1/R << 1/G, mutta 1/R:lläkään ei taida olla nimeä ja se ei ole laskettavissa oleva ja edes R:lläkään ei taida olla mitään muuta erityistä matemaattista relevanssia tai käyttötarkoitusta, kuin toimia osana Rayo-funktion erittäin suuren kasvunopeuden demonstrointia, verrattaessa tuota funktiota muihin nopeasti kasvaviin funktioihin.
      https://en.wikipedia.org/wiki/Rayo's_number
      https://en.wikipedia.org/wiki/Fast-growing_hierarchy

      - Paljoona-on-paljonko

    Ketjusta on poistettu 2 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. IL - Patteriauto syttyi parkkihallissa Tampereella - 50 autoa LUNASTUKSEEN!

      "Palon aikaan parkkihallissa oli 90 autoa, joista noin 50 tuhoutui palossa korjauskelvottomiksi. Lisäksi palo vaurioitti
      Maailman menoa
      240
      45281
    2. Kristillisistä Siionisteista asiallista tietoa Hesarissa.

      KD ja Persut ovat kaiken takana avoimesti!
      Maailman menoa
      30
      11223
    3. Persut JYTKYTTÄÄ ylös, ohi kepun! +2,1 %

      Persut palasi kolmen suurimman joukkoon ja on matkalla kohti kevään 2027 eduskuntavaalivoittoa. Sosialistit ovat syöksy
      Maailman menoa
      176
      10821
    4. Sanna Marin saa ylistystä Hillary Clintonilta

      Jos joku ei tiedä kuka tämä rouva Hillary Clinton on, niin kerrottakoon "fun fact", eli hän on se keneltä Donald Trump
      Maailman menoa
      36
      9691
    5. Ja jälleen uusi latauksessa olleen sähköauton palo! Nyt Keravan Prisman parkkihallissa.

      IS 3.10.2025 Latauksessa ollut sähköauto syttyi yöllä tuleen Keravan Prisman parkkihallissa, Keski-Uudenmaan pelastusla
      Maailman menoa
      85
      8498
    6. Gallup, PS:lle JÄRISYTTÄVÄ nousu, SDP suurin laskija

      https://yle.fi/a/74-20186114 PS kovaa vauhtia nousemassa ennen 2027 vaaleja suurimmaksi puolueeksi. Nyt mennään jo etua
      Maailman menoa
      223
      6501
    7. Pirjo sanoi Esalle

      Painu sinä Esa hevonvittuun... johon Esa? Laittakaapa ehdotuksia. # ==================== # APUFUNKTIO: satunnainen kok
      Maailman menoa
      0
      2850
    8. Jos mä joisin

      Itteni känniin nyt, voi olla että mä tunnustaisin sulle kuinka ihastunut oon ollu suhun viimeiset 2 vuotta. Eikä mua pys
      Ikävä
      28
      2202
    9. Tänään torille

      Tänään kuulema torilla tapahtuu klo.20. Tulkaaha paikalle kattoon.
      Hyrynsalmi
      32
      1485
    10. Koulu-uhkaus.

      Meinaatteko päästää lapsenne kouluun, niin kauan kun tämä uhkaaja siellä myös on? Tekijä on kaikilla tiedossa.
      Hyrynsalmi
      26
      1470
    Aihe