Binäärijonojen ykkösputket

Väritetään n:n peräkkäisen ruudun rivistä osa mustiksi ja lasketaan millaiset putket väritettyjä tuli. Esim (1=väritetty, 0=tyhjä):

0110010111 ---> [2, 1, 3]

Kutsutaan tätä putkien pituuksista koottua vektoria värityksen putkityypiksi.

a) Kuinka monta erilaista putkityyppiä voidaan n:n ruudun rivistä muodostaa?
b) Olkoon rivin pituus n. Kuinka moni eri väritys tuottaa putkityypin [k1, k2, ..., k_m]?

6

72

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Joo. Kaljalla on ihmeitä tekevä voima.

    • Kutsutaan putkityyppiä (ja väritystä) maksimaaliseksi, jos siinä mitään putkea ei voi pidentää yhdistämättä putkia.
      Esim. 11011101 on maksimaalinen, mutta 10011 ei ole, sillä se voidaan pidentää 10111:ksi tai 11011.
      Toisin sanoen jokaisen putken välissä on tasan yksi tyhjä ja päissä ei ole tyhjiä. Tämä voidaan putkityypille [k1, k2,..., km] myös ilmaista yhtälöllä

      m - 1 k1 k2 ... km = n

      Olkoon n edelleen rivin pituus. Valitaan putkityyppi satunnaisesti. Huom! ei siis väritystä vaan valitaan mahdollisten putkityyppien tasajakaumasta. Kysymys kuuluu:

      c) Mikä on todennäköisyys että tyyppi on maksimaalinen? Mitä lukua tämä lähenee, kun n menee äärettömään?

      Otetaan sitten väritysten tasajakauma ja kysytään:

      d) Mikä on värityksen pisimmän putken odotusarvo.

      Voidaanhan tämä toki kysyä myös putkityyppien tasajakaumalle:

      e) Mikä on putkityypin (valitaan mahdollisten putkityyppien tasajakaumasta) suurimman alkion odotusarvo?

      • Anonyymi

        Älä ota enää!


    • Anonyymi

      a) Määrät saadaan erittäin monikäyttöisestä sarjasta: https://oeis.org/A000071
      (Ekaa nollaa lukuunottamatta?)

      n
      0: 0
      1: 1
      2: 2
      3: 4
      4: 7
      5: 12
      6: 20
      7: 33
      8: 54
      9: 88
      10: 143
      11: 232
      12: 376
      13: 609
      14: 986
      15: 1596
      16: 2583
      17: 4180
      18: 6764
      19: 10945
      20: 17710

      • Joo, itse asiassa ykköstäkään ei tarvitse vähentää, kun ottaa mukaan myös tyhjän putkityypin [] (ja onhan se mukaan otettava, sillä se tulee tyhjästä värityksestä 00...0).
        Esim. n=1:lle on kaksi kappaletta [] ja [1]. Ja nollalla vain [] eli yksi kappale, eli sekin toimii.

        Tässä kuinka minä sen alunperin laskin: https://membolicsythod.home.blog/2019/12/10/binaariblokit/
        Mutta rekursion noille kysytyille lukumäärille (tuolla merkitty a_n) näkee myös ilman b_n:iä ja graafeja/automaatteja näin:

        Olkoon rivin pituus n 1. Lasketaan mahdolliset putkityypit kahdessa osassa: ensin sellaiset, joiden ensimmäinen alkio on 1 ja sitten sellaiset, joiden ensimmäinen alkio > 1. Ensimmäisessä tapauksessa loppu putkityyppi [k_2, ... , k_m] on sellainen joka mahtuu n-2:n pituiseen riviin (koska käytetään korkeintaan 2 ruutua: se yksi väritetty ja sen oikealla puolella oleva pakollinen tyhjä). Jälkimmäisessä tapauksessa putkityyppi [k_1-1, k_2, ..., k_m] on sellainen joka mahtuu n-1:n ruudun riviin (vain yksi väritetty poistetaan alusta).
        Jokainen putkityyppi saadaan jommasta kummasta tapauksesta ja kaikki näin muodostetut ovat eri vektoreita, joten haluttu Fibonacci-rekursio on todistettu ja riittää tutkia alkuehdot, mikä jo tehtiinkin.


      • minkkilaukku kirjoitti:

        Joo, itse asiassa ykköstäkään ei tarvitse vähentää, kun ottaa mukaan myös tyhjän putkityypin [] (ja onhan se mukaan otettava, sillä se tulee tyhjästä värityksestä 00...0).
        Esim. n=1:lle on kaksi kappaletta [] ja [1]. Ja nollalla vain [] eli yksi kappale, eli sekin toimii.

        Tässä kuinka minä sen alunperin laskin: https://membolicsythod.home.blog/2019/12/10/binaariblokit/
        Mutta rekursion noille kysytyille lukumäärille (tuolla merkitty a_n) näkee myös ilman b_n:iä ja graafeja/automaatteja näin:

        Olkoon rivin pituus n 1. Lasketaan mahdolliset putkityypit kahdessa osassa: ensin sellaiset, joiden ensimmäinen alkio on 1 ja sitten sellaiset, joiden ensimmäinen alkio > 1. Ensimmäisessä tapauksessa loppu putkityyppi [k_2, ... , k_m] on sellainen joka mahtuu n-2:n pituiseen riviin (koska käytetään korkeintaan 2 ruutua: se yksi väritetty ja sen oikealla puolella oleva pakollinen tyhjä). Jälkimmäisessä tapauksessa putkityyppi [k_1-1, k_2, ..., k_m] on sellainen joka mahtuu n-1:n ruudun riviin (vain yksi väritetty poistetaan alusta).
        Jokainen putkityyppi saadaan jommasta kummasta tapauksesta ja kaikki näin muodostetut ovat eri vektoreita, joten haluttu Fibonacci-rekursio on todistettu ja riittää tutkia alkuehdot, mikä jo tehtiinkin.

        Ai niin nyt unohtu itseltänikin se tyhjä putkityyppi tuossa todistuksessa, kun oletin, että sillä on ensimmäinen alkio! Se voidaan ottaa mukaan jälkimmäiseen kategoriaan (ja sovitaan, että jos ensimmäinen alkio on olemassa vähennetään siitä 1). Esim. kun n=4 niin ne menee näin

        n=2:lle putkityypit ovat: {[], [1], [2]}
        n=3:lle putkityypit ovat: {[], [1], [2], [3], [1,1]}

        {[], [1], [2], [3], [4] [1,1], [1,2], [2,1] }
        = {[1], [1, 1], [1, 2]} U {[], [1 1], [2 1], [3 1], [1 1,1]}
        = "n=2:lle ykkönen lisätty vektorin alkuun" U "n=3:lle lisätty ykkönen vektorin ensimmäiseen komponenttiin, mikäli olemassa".


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Taas nuoren kuolema

      Vasunmäentiellä paha onnettomuus. Nuori nainen menehtyi. Niiin sydäntä riipaisevaa 😭
      Lapua
      182
      7728
    2. Elikkäs persuissa ovat pahimmat häiriköijät

      Koska sieltä tuli kaikkein kovin ulahdus. Persujen peesissä seuraa kokoomus js hajuraon päässä röhkii kepulaiset. Olipa
      Maailman menoa
      92
      3764
    3. "Skandaali muhii SDP:ssä" - "pelon ilmapiiri vallitsee"

      Puolueen johto on vähintään vastuussa ilmapiiristä, jossa häirinnän uhrit eivät ole saaneet ääntään kuuluviin. Vyyhdin
      Maailman menoa
      129
      3656
    4. Tehomaksu rankaisisi normaalista sähkönkäytöstä

      Energiaviraston valmistelema tehomaksumalli herättää aiheellista huolta erityisesti tavallisten kotitalouksien näkökulma
      Maailman menoa
      89
      2961
    5. Ahdistelu ongelmaa vain vasemmistossa - ei oikeiston edustajissa

      Mutta demarit ovat tunnetusti sivistymättömiä, ja vähemmän fiksuja.
      Maailman menoa
      47
      2476
    6. Tampereen "empatiatalu" - "Harvoin näkee mitään näin kajahtanutta"

      sanoo kokoomuslainen. Tampereen kaupunginvaltuuston maanantain kokouksessa käsiteltävä Tampereen uusi hyvinvointisuunni
      Maailman menoa
      118
      2468
    7. Kuinka paljon teillä

      on ikäeroa?
      Ikävä
      136
      2014
    8. Sinusta kulta paljastuikin yllättävä

      taito. Vaikuttavaa. ❤️
      Ikävä
      65
      1500
    9. Miksi suorittamisesta tulee

      Miksi suorittamisesta tulee hyvä fiilis? Mitä sillä paikataan? Jollekinhan se voi olla jopa terapeuttista, mutta itse a
      Sinkut
      64
      1365
    10. Trump asettaa Grönlannin kaappausta vastustaville Euroopan maille 10% tuontitullin

      Suomi mukana näissä maissa. Myöhemmin Trump aikoo nostaa tuontitullit 25%:iin kesäkuun alusta, jos Grönlannin kaappausta
      Maailman menoa
      381
      1353
    Aihe