Sulkeuman määrääminen

Anonyymi

Tämmöinen tehtävä: olkoon A reaalilukujen osajoukko s.e. A=(0,1) U {2}. Määrää sulkeuma joukon R kofiniittisessa topologiassa.

Tässä topologiassa ainoat suljetut joukot ovat äärelliset joukot ja koko avaruus. Komplementti koostuu yhdisteestä (-inf, 0] U [1,2) U (2,inf). Määritelmän mukaan komplementin olisi oltava äärellinen, mutta tuohan on ääretön. Onko joukon sulkeuma nyt koko avaruus?

6

172

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Joukon A sulkeuma on pienin suljettu joukko, joka sisältää A:n. Eli toisin sanoen sulkeuma on leikkaus kaikista suljetuista joukoista, jotka sisältävät A:n. Millainen on suljettu joukko joka sisältää A:n? Se sisältää A:n joten sen on oltava ääretön joukko. Koska se on suljettu, on ainoa mahdollisuus koko R.
      Siis leikkauksessa on mukana vain R, eli siitä tulee R.

      Eli kyllä, lopputulos on koko avaruus, mutta päättelysi ei ollut ihan oikein. Esim kohta
      "Määritelmän mukaan komplementin olisi oltava äärellinen, mutta tuohan on ääretön. "
      Tämähän on avoimen joukon määritelmä. Mutta se on nyt A:n sulkeuma jota yritetään löytää, ei osoittaa A:ta avoimeksi.

      • Anonyymi

        Kiitos avusta! Toinen, mitä olen miettinyt on vasen puolisäde-topologia, missä T={tyhjä joukko, R} U {(-inf,a)} , missä a € R.

        Tämän suljetut joukot ovat tyhjä joukko, R sekä välit [a, inf). Jos a on nolla, niin silloin saisin suljetun välin [0, inf), mihin sisältyy A. Sulkeuma olisi siis tuo väli. Onko tämä riittävä perustelu?


      • Anonyymi kirjoitti:

        Kiitos avusta! Toinen, mitä olen miettinyt on vasen puolisäde-topologia, missä T={tyhjä joukko, R} U {(-inf,a)} , missä a € R.

        Tämän suljetut joukot ovat tyhjä joukko, R sekä välit [a, inf). Jos a on nolla, niin silloin saisin suljetun välin [0, inf), mihin sisältyy A. Sulkeuma olisi siis tuo väli. Onko tämä riittävä perustelu?

        Joo, A ⊆ [0, inf), ja [0, inf) on suljettu, joten à ⊆ [0, inf). Perusteluun pitäisi vielä lisätä että miksi [0, inf) ⊆ Ã. Se tulee siitä, että à on suljettu ja koska suljetulle joukolle pätee aina se, että jos se sisältää pisteen x, niin se sisältää myös välin [x, inf), niin siitähän se seuraa, sillä 0∈A ⊆ Ã.

        (Merkintä Ã on A:n sulkeuma.)


      • minkkilaukku kirjoitti:

        Joo, A ⊆ [0, inf), ja [0, inf) on suljettu, joten à ⊆ [0, inf). Perusteluun pitäisi vielä lisätä että miksi [0, inf) ⊆ Ã. Se tulee siitä, että à on suljettu ja koska suljetulle joukolle pätee aina se, että jos se sisältää pisteen x, niin se sisältää myös välin [x, inf), niin siitähän se seuraa, sillä 0∈A ⊆ Ã.

        (Merkintä Ã on A:n sulkeuma.)

        Sori, nollahan ei kuulunut A:han, joten se perustelu vaatii vähän lisää...
        Tee niin, että osoita ettei à voi olla [x, inf) millekään x>0, joten jäljelle jää ainoa vaihtoehto [0, inf).


      • Anonyymi
        Anonyymi kirjoitti:

        Kiitos avusta! Toinen, mitä olen miettinyt on vasen puolisäde-topologia, missä T={tyhjä joukko, R} U {(-inf,a)} , missä a € R.

        Tämän suljetut joukot ovat tyhjä joukko, R sekä välit [a, inf). Jos a on nolla, niin silloin saisin suljetun välin [0, inf), mihin sisältyy A. Sulkeuma olisi siis tuo väli. Onko tämä riittävä perustelu?

        Kirjoitan suljetun joukon näin: /a,b/, avoimen (a,b), puoliavoimen /a,b) tsai (a,b/.

        Suljetut joukot ovat siis tyhjä joukko, R ja muotoa /a,inf) olevat joukot missä a on reaaliluku.
        A on osajoukkona jokaisessa joukossa /a,inf) missä a <= 0. Nämä ovat suljettuja ja ainoita suljettuja jotka sisältävät A:n.
        A:n sulkeuma on näiden leikkaus eli /0,inf).


      • Anonyymi
        Anonyymi kirjoitti:

        Kirjoitan suljetun joukon näin: /a,b/, avoimen (a,b), puoliavoimen /a,b) tsai (a,b/.

        Suljetut joukot ovat siis tyhjä joukko, R ja muotoa /a,inf) olevat joukot missä a on reaaliluku.
        A on osajoukkona jokaisessa joukossa /a,inf) missä a <= 0. Nämä ovat suljettuja ja ainoita suljettuja jotka sisältävät A:n.
        A:n sulkeuma on näiden leikkaus eli /0,inf).

        Pieni korjaus: myös R on suljettu joukko, joka sisältää osajoukkonaan A:n. Mutta R myös sisältää jokaisen noista joukoista /a,inf) missä a <= 0 joten leikkaus on sama /0,inf).


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Suureksi onneksesi on myönnettävä

      Että olen nyt sitten mennyt rakastumaan sinuun. Ei tässä mitään, olen kärsivällinen ❤️
      Ikävä
      93
      2099
    2. Perusmuotoiset TV-lähetykset loppu

      Nyt sanoo useiden HD-muotoistenkin kanavien kohdalla äly-TV, ettei kanava ole käytössä, haluatko poistaa sen? Kanavia
      Apua aloittelijalle
      167
      1540
    3. YLE Äänekosken kaupunginjohtaja saa ankaraa arvostelua

      Kaupungin johtaja saa ankaraa kritiikkiä äkkiväärästä henkilöstöjohtamisestaan. Uusin häirintäilmoitus päivätty 15 kesä
      Äänekoski
      74
      1319
    4. Euroopan lämpöennätys, 48,8, astetta, on mitattu Italian Sisiliassa

      Joko hitaampikin ymmärtää. Se on aivan liikaa. Ilmastonmuutos on totta Euroopassakin.
      Maailman menoa
      236
      1200
    5. No ei sun asunto eikä mikään

      muukaan sussa ole erikoista. 🤣 köyhä 🤣
      Ikävä
      73
      1170
    6. Hyvin. Ikävää nainen,

      Että vainoat ja stalkkaat miestäni.onko tarkoituksesi ehkä saada meidät eroamaan?no,siinä et tule onnistumaan
      Ikävä
      88
      1096
    7. Martina lähdössä Ibizalle

      Eikä Eskokaan tiennyt matkasta. Nyt ollaan jännän äärellä.
      Kotimaiset julkkisjuorut
      151
      1041
    8. Asiakas iski kaupassa varastelua tehneen kanveesiin.

      https://www.iltalehti.fi/kotimaa/a/33a85463-e4d5-45ed-8014-db51fe8079ec Oikein. Näin sitä pitää. Kyllä kaupoissa valtava
      Maailman menoa
      245
      984
    9. Katsoin mies itseäni rehellisesti peiliin

      Ja pakko on myöntää, että rupsahtanut olen 😆. Niin se ikä saavuttaa meidät kaikki.
      Ikävä
      51
      916
    10. Uskomaton tekninen vaaliliitto poimii rusinoita pullasta

      Korni näytösesitelmä menossa kaupunginvaltuustossa. Juhlia ei ole kokouksista tiedossa muilla, kuin monipuolue paikalli
      Pyhäjärvi
      88
      891
    Aihe