Osoita, että A ∪ Bd(A) = Int(A) ∪ Bd(A). Koska A sisältää aina sisäpisteensä, toinen inkluusioista on triviaali. Inkluusion A ∪ Bd(A) ⊂ Int(A) ∪ Bd(A) olen todistanut seuraavasti:
olk. x ∈ A ∪ Bd(A). Tällöin x ∈ A tai x ∈ Bd(A). Mikäli x ei kuulu joukon A reunapisteisiin, se kuuluu välttämättä joukon A sisäpisteisiin. Siis x ∈ Int(A) tai x ∈ Bd(A). Tämä todistaisi, että A ∪ Bd(A) ⊂ Int(A) ∪ Bd(A).
Onko todistus riittävä?
inkluusion todistamisesta
7
77
Vastaukset
- Anonyymi
Entäpä jos x on A:n "isolated point" eli sillä on ympäristö jossa eiole muita A:n pisteitä kuin itse x. Se ei silloin ole A:n reunapiste. Näin ollen vaikka x ei ole A:n reunapiste se ei myöskään ole A:n sisäpiste.
Bd(A) = A:n sulkeuman ja X-A : n sulkeuman leikkaus (X on siis koko avaruus).
Int(A) ja Bd(A) ovat pistevieraita ja A:n sulkeuma on Int(A) U Bd(A)..Kuuluikos reunan määritelmään tuo, että "...muita kuin itse". Se taitaa olla kasautumispisteen määritelmä. Kyllä isoloidut pisteet ovat reunapisteitä.
- Anonyymi
minkkilaukku kirjoitti:
Kuuluikos reunan määritelmään tuo, että "...muita kuin itse". Se taitaa olla kasautumispisteen määritelmä. Kyllä isoloidut pisteet ovat reunapisteitä.
Pitää paikkansa.
Olkoon A:n sulkeuma S(A), komplementti C(A) ja A:n ja B:n leikkaus A&B
Määritelmä: Bd(A) = S(A) & S(C(A)). Siis Bd(A) = S(A) - Int(A). Isoloitu piste kuuluu kyllä joukkoon S(A) mutta ei ole A:n sisäpiste joten se on kyllä reunapiste.
Isoloitu piste x on sellainen että sillä on ympäristö joka ei sisällä muita A:n pisteitä kuin itsensä eli pisteen x.Mutta sillloin sillä on siis ympäristö joka sisältää sekä C(A):n pisteitä että A:n pisteitä, nimittäin tuon pisteen x, ja x on siis reunapiste.Vähän "subtle" juttu tämä.
Ja aloittajan todistelu on oikea.
Tuo
"x ei ole reunapiste => x on sisäpiste"
kannattaa vielä perustella ihan määritelmistä lähtien. Aika selvä hommahan se on, mutta näin perustavaalaatua olevassa tuohan siinä on niinkuin juuri se pääasia.
Eli jos lähdetään tuota todistamaan ja oletetaan että A:n piste x ei ole reunapiste. (Huom. niin tässähän voidaan olettaa, että x ∈ A). Reunapisteys tarkoittaa, että jokainen x:n ympäristö (eli x:n sisältävä avoin joukko) leikkaa A:n komplementtia. Eli ei-reunapisteys tarkoittaa, että on olemassa jokin avoin joukko joka ei... tässähän ollaan jo melkein maalissa.- Anonyymi
Tattista kommenteista.
- Anonyymi
Esitän tässä yhden todistuksen kysytystä asiasta. Lukeneeko aloittaja enää tätä?
Käytän samoja merkintöjä kuin aiemmissa jutuissa. Lisaäksi jo täällä aiemmin esiintynyt merkintä A ( B (A on B:n osajoukko). Toivottavasti ei sotketa merkintään C(A) joka tarkoittaa A:n komplementtia X - A.
Ensiksi apulause.
Int(A) = U (A(a) l A(a) ( A, A(a) avoin)
C(Int(A)) = & (C(A(a)) l C(A) ( C(A(a)) , C(A(a)) suljettu) = S(C(A))
Int(A) = C(S(C(A)))
Tuossa käytettiin sitä että jos A ( B niin C(B) ( C(A) ja sitä että C(C(A)) = A
Tästä seuraa muuten helposti toinenkin hauska seikka. Kun pannaan A:n tilalle C(A) saadaan
Int(C(A)) = C(S(C(C(A)))) = C(S(A)) joten
S(A) = C(Int((C(A))))
Nuo siis pätevät kaikille joukoille A.
Määritelmä: Bd(A) = S(A) & S(C(A))
A U Bd(A) = A U ( S(A) & S(C(A)) =
(A U S(A)) & (A U S(C(A))) =
S(A) & X = S(A) sillä A ( S(A) ja C(A) ( S(C(A))
jatkan seuraavalla kommentilla ennenkuin tämä häipyy...- Anonyymi
No niin...
Int(A) U Bd(A) = Int(A) U (S(A) & S(C(A))) = (Int(A) U S(A)) & (Int(A) U S(C(A))) =
S(A) & ( Int(A) U S(C(A))) = S(A) & (C(S(C(A))) U S(C(A))) = S(A) & X = S(A).
Siis: S(A) = A U Bd(A) = Int(A) U Bd(A)
MOT
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
- 784409
Purra on kantanut vastuuta täyden kympin arvoisesti
Luottoluokituksen lasku, ennätysvelat ja ennätystyöttömyys siitä muutamana esimerkkinä. Jatkakoon hän hyvin aloittamaans1164127BOIKOTOIN - Ei mitään Suomi.fi postilaatikoita käyttöön
Ainakaan minulle! Vai että pitäisi alkaa siellä käyädä katselemassa tammikuusta 2026 siis periaatteessa päivittäin että1683082Surullista
Että menetit sen naisen , tosi surullista ja vielä oman tyhmyyden takia ,ymmärrän että se on masentavaa582557Muuttunut käytös
Onko kaivattusi käytös muuttunut? Tiedätkö mistä se johtuu? Haluatko kertoa, mitä tapahtui?672407- 1432290
Lasse Lehtonen vaatii persuja pyytämään anteeksi aasialaisilta
Persut ova romahduttaneet Suomen maakuvan parissa päivässä negatiiviseksi rasismillaan ja se alkaa vaikuttamaan jo Suome562149Väkeä oli liikkeellä
Nyt leijutaan pilvissä. Kun eläinpuistossa oli porukkaa 😆😆 Olihan siellä kun ilmaiseksi pääsivät. Eiköhän se juuri sik422107- 522022
Kummallista
Oletteko koskaan ihastuneet ihmiseen, joka ei ulkonäöltään vastaa ollenkaan ihannettanne?561772