Osoita, että A ∪ Bd(A) = Int(A) ∪ Bd(A). Koska A sisältää aina sisäpisteensä, toinen inkluusioista on triviaali. Inkluusion A ∪ Bd(A) ⊂ Int(A) ∪ Bd(A) olen todistanut seuraavasti:
olk. x ∈ A ∪ Bd(A). Tällöin x ∈ A tai x ∈ Bd(A). Mikäli x ei kuulu joukon A reunapisteisiin, se kuuluu välttämättä joukon A sisäpisteisiin. Siis x ∈ Int(A) tai x ∈ Bd(A). Tämä todistaisi, että A ∪ Bd(A) ⊂ Int(A) ∪ Bd(A).
Onko todistus riittävä?
inkluusion todistamisesta
7
61
Vastaukset
- Anonyymi
Entäpä jos x on A:n "isolated point" eli sillä on ympäristö jossa eiole muita A:n pisteitä kuin itse x. Se ei silloin ole A:n reunapiste. Näin ollen vaikka x ei ole A:n reunapiste se ei myöskään ole A:n sisäpiste.
Bd(A) = A:n sulkeuman ja X-A : n sulkeuman leikkaus (X on siis koko avaruus).
Int(A) ja Bd(A) ovat pistevieraita ja A:n sulkeuma on Int(A) U Bd(A)..Kuuluikos reunan määritelmään tuo, että "...muita kuin itse". Se taitaa olla kasautumispisteen määritelmä. Kyllä isoloidut pisteet ovat reunapisteitä.
- Anonyymi
minkkilaukku kirjoitti:
Kuuluikos reunan määritelmään tuo, että "...muita kuin itse". Se taitaa olla kasautumispisteen määritelmä. Kyllä isoloidut pisteet ovat reunapisteitä.
Pitää paikkansa.
Olkoon A:n sulkeuma S(A), komplementti C(A) ja A:n ja B:n leikkaus A&B
Määritelmä: Bd(A) = S(A) & S(C(A)). Siis Bd(A) = S(A) - Int(A). Isoloitu piste kuuluu kyllä joukkoon S(A) mutta ei ole A:n sisäpiste joten se on kyllä reunapiste.
Isoloitu piste x on sellainen että sillä on ympäristö joka ei sisällä muita A:n pisteitä kuin itsensä eli pisteen x.Mutta sillloin sillä on siis ympäristö joka sisältää sekä C(A):n pisteitä että A:n pisteitä, nimittäin tuon pisteen x, ja x on siis reunapiste.Vähän "subtle" juttu tämä.
Ja aloittajan todistelu on oikea.
Tuo
"x ei ole reunapiste => x on sisäpiste"
kannattaa vielä perustella ihan määritelmistä lähtien. Aika selvä hommahan se on, mutta näin perustavaalaatua olevassa tuohan siinä on niinkuin juuri se pääasia.
Eli jos lähdetään tuota todistamaan ja oletetaan että A:n piste x ei ole reunapiste. (Huom. niin tässähän voidaan olettaa, että x ∈ A). Reunapisteys tarkoittaa, että jokainen x:n ympäristö (eli x:n sisältävä avoin joukko) leikkaa A:n komplementtia. Eli ei-reunapisteys tarkoittaa, että on olemassa jokin avoin joukko joka ei... tässähän ollaan jo melkein maalissa.- Anonyymi
Tattista kommenteista.
- Anonyymi
Esitän tässä yhden todistuksen kysytystä asiasta. Lukeneeko aloittaja enää tätä?
Käytän samoja merkintöjä kuin aiemmissa jutuissa. Lisaäksi jo täällä aiemmin esiintynyt merkintä A ( B (A on B:n osajoukko). Toivottavasti ei sotketa merkintään C(A) joka tarkoittaa A:n komplementtia X - A.
Ensiksi apulause.
Int(A) = U (A(a) l A(a) ( A, A(a) avoin)
C(Int(A)) = & (C(A(a)) l C(A) ( C(A(a)) , C(A(a)) suljettu) = S(C(A))
Int(A) = C(S(C(A)))
Tuossa käytettiin sitä että jos A ( B niin C(B) ( C(A) ja sitä että C(C(A)) = A
Tästä seuraa muuten helposti toinenkin hauska seikka. Kun pannaan A:n tilalle C(A) saadaan
Int(C(A)) = C(S(C(C(A)))) = C(S(A)) joten
S(A) = C(Int((C(A))))
Nuo siis pätevät kaikille joukoille A.
Määritelmä: Bd(A) = S(A) & S(C(A))
A U Bd(A) = A U ( S(A) & S(C(A)) =
(A U S(A)) & (A U S(C(A))) =
S(A) & X = S(A) sillä A ( S(A) ja C(A) ( S(C(A))
jatkan seuraavalla kommentilla ennenkuin tämä häipyy...- Anonyymi
No niin...
Int(A) U Bd(A) = Int(A) U (S(A) & S(C(A))) = (Int(A) U S(A)) & (Int(A) U S(C(A))) =
S(A) & ( Int(A) U S(C(A))) = S(A) & (C(S(C(A))) U S(C(A))) = S(A) & X = S(A).
Siis: S(A) = A U Bd(A) = Int(A) U Bd(A)
MOT
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
24h Kirppis
Olen muuttamassa paikkakunnalle ja mietin olisiko tälläiselle liikkeelle tarvetta alueella?144576Suomessa eletään liian pitkään
"Ihmisten on kuoltava" Asiantuntija varoittaa: Suomi ei ole valmis siihen, että niin moni elää pitkään: ”Kaiken täytyy3473781Kerotakaa joensuun kontiolahden paiholan laitoksesta jotain
Mun kaveri joutuu paiholan laitokseen nyt lähi aikoina niin voisko ihmiset kertoa minkälaista siellä on tarinoita jne ja363446Voitaisko olla kavereita?
Haluaisin aloittaa puhtaalta pöydältä sinun kanssasi, tabula rasa. Minä lopetan sinun perääsi haikailun, ja sitten sinäk182980Deodoranttiteollisuus
Annan ilmaisen vinkin. Kyseinen teollisuus voisi alkaa valmistaa kuolleen ruumiin hajua. Olisi varma hittituote, ainakin122543- 2792323
Martinan mies on Suomessa.
Siellä se on Martinan instassa ja täällä on jo ero tullut. Voi että kun huvittaa...3161772- 981743
Maistaisitko sinä näitä valmisruokia?
Terhi Kinnari ja Kinnarin tila voitti Suomalainen menestysresepti -kisan. Makuja Kinnarin tilan kaurapohjaisissa aterioi461459Rukoilimme Länsimuurilla 2000 vuoden jälkeen, Jumalamme oli antanut meille kaiken takaisin
Western Wall, In our Hands. 55th Para. https://www.youtube.com/watch?v=u4BJAppyCSo https://en.wikipedia.org/wiki/55th_81173