inkluusion todistamisesta

Anonyymi

Osoita, että A ∪ Bd(A) = Int(A) ∪ Bd(A). Koska A sisältää aina sisäpisteensä, toinen inkluusioista on triviaali. Inkluusion A ∪ Bd(A) ⊂ Int(A) ∪ Bd(A) olen todistanut seuraavasti:
olk. x ∈ A ∪ Bd(A). Tällöin x ∈ A tai x ∈ Bd(A). Mikäli x ei kuulu joukon A reunapisteisiin, se kuuluu välttämättä joukon A sisäpisteisiin. Siis x ∈ Int(A) tai x ∈ Bd(A). Tämä todistaisi, että A ∪ Bd(A) ⊂ Int(A) ∪ Bd(A).
Onko todistus riittävä?

7

80

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Entäpä jos x on A:n "isolated point" eli sillä on ympäristö jossa eiole muita A:n pisteitä kuin itse x. Se ei silloin ole A:n reunapiste. Näin ollen vaikka x ei ole A:n reunapiste se ei myöskään ole A:n sisäpiste.

      Bd(A) = A:n sulkeuman ja X-A : n sulkeuman leikkaus (X on siis koko avaruus).
      Int(A) ja Bd(A) ovat pistevieraita ja A:n sulkeuma on Int(A) U Bd(A)..

      • Kuuluikos reunan määritelmään tuo, että "...muita kuin itse". Se taitaa olla kasautumispisteen määritelmä. Kyllä isoloidut pisteet ovat reunapisteitä.


      • Anonyymi
        minkkilaukku kirjoitti:

        Kuuluikos reunan määritelmään tuo, että "...muita kuin itse". Se taitaa olla kasautumispisteen määritelmä. Kyllä isoloidut pisteet ovat reunapisteitä.

        Pitää paikkansa.
        Olkoon A:n sulkeuma S(A), komplementti C(A) ja A:n ja B:n leikkaus A&B

        Määritelmä: Bd(A) = S(A) & S(C(A)). Siis Bd(A) = S(A) - Int(A). Isoloitu piste kuuluu kyllä joukkoon S(A) mutta ei ole A:n sisäpiste joten se on kyllä reunapiste.

        Isoloitu piste x on sellainen että sillä on ympäristö joka ei sisällä muita A:n pisteitä kuin itsensä eli pisteen x.Mutta sillloin sillä on siis ympäristö joka sisältää sekä C(A):n pisteitä että A:n pisteitä, nimittäin tuon pisteen x, ja x on siis reunapiste.Vähän "subtle" juttu tämä.

        Ja aloittajan todistelu on oikea.


    • Tuo

      "x ei ole reunapiste => x on sisäpiste"

      kannattaa vielä perustella ihan määritelmistä lähtien. Aika selvä hommahan se on, mutta näin perustavaalaatua olevassa tuohan siinä on niinkuin juuri se pääasia.

      Eli jos lähdetään tuota todistamaan ja oletetaan että A:n piste x ei ole reunapiste. (Huom. niin tässähän voidaan olettaa, että x ∈ A). Reunapisteys tarkoittaa, että jokainen x:n ympäristö (eli x:n sisältävä avoin joukko) leikkaa A:n komplementtia. Eli ei-reunapisteys tarkoittaa, että on olemassa jokin avoin joukko joka ei... tässähän ollaan jo melkein maalissa.

    • Anonyymi

      Tattista kommenteista.

    • Anonyymi

      Esitän tässä yhden todistuksen kysytystä asiasta. Lukeneeko aloittaja enää tätä?

      Käytän samoja merkintöjä kuin aiemmissa jutuissa. Lisaäksi jo täällä aiemmin esiintynyt merkintä A ( B (A on B:n osajoukko). Toivottavasti ei sotketa merkintään C(A) joka tarkoittaa A:n komplementtia X - A.
      Ensiksi apulause.

      Int(A) = U (A(a) l A(a) ( A, A(a) avoin)
      C(Int(A)) = & (C(A(a)) l C(A) ( C(A(a)) , C(A(a)) suljettu) = S(C(A))
      Int(A) = C(S(C(A)))
      Tuossa käytettiin sitä että jos A ( B niin C(B) ( C(A) ja sitä että C(C(A)) = A

      Tästä seuraa muuten helposti toinenkin hauska seikka. Kun pannaan A:n tilalle C(A) saadaan

      Int(C(A)) = C(S(C(C(A)))) = C(S(A)) joten
      S(A) = C(Int((C(A))))
      Nuo siis pätevät kaikille joukoille A.

      Määritelmä: Bd(A) = S(A) & S(C(A))

      A U Bd(A) = A U ( S(A) & S(C(A)) =
      (A U S(A)) & (A U S(C(A))) =
      S(A) & X = S(A) sillä A ( S(A) ja C(A) ( S(C(A))
      jatkan seuraavalla kommentilla ennenkuin tämä häipyy...

      • Anonyymi

        No niin...
        Int(A) U Bd(A) = Int(A) U (S(A) & S(C(A))) = (Int(A) U S(A)) & (Int(A) U S(C(A))) =
        S(A) & ( Int(A) U S(C(A))) = S(A) & (C(S(C(A))) U S(C(A))) = S(A) & X = S(A).

        Siis: S(A) = A U Bd(A) = Int(A) U Bd(A)

        MOT


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Muistakaa persut, että TE petitte, ei kokoomus

      Miksikö kukaan ei arvostele kokoomusta? No sen vuoksi, että kokoomus noudattaa vaalilupauksiaan. Sen sijaan TE persut,
      Maailman menoa
      132
      3159
    2. Seuraava hallituspohja - Kokoomus, kepu, persut + KD

      Kokoomus saa ainakin 20% kannatuksen ensi vaaleissa, keskusta sanoisin noin 15%, persut todennäköisesti enemmän, ehkä 17
      Maailman menoa
      213
      2791
    3. Outo ilmiö - vasemmistolaiset eivät kirjoita mitään kokoomuksesta

      joka sentään johtaa hallitusta, ja jonka talouspolitiikkaa noudatetaan. Nämä muutamat vasemmistolaiset jotka täällä aina
      Maailman menoa
      66
      2200
    4. Maria Veitola kommentoi soutelija Saarion huomionhakuisuutta

      "Minusta on jotenkin kuvottavaa, kuinka kovalla intensiteetillä Suomi-media seuraa miessankari Jari Saarion merihätää. S
      Kotimaiset julkkisjuorut
      270
      1579
    5. Väestöstä vain vassarit vaihtuvat nopeammin kuin persut

      Kevääseen 2023 verrattuna vassareita 50 prosenttia enemmän, ja persuja 25 prosenttia vähemmän.
      Maailman menoa
      5
      1473
    6. Vihervassarit

      Vihervassarit sitä, vihervassarit tätä. Minulla on paha mt-ongelma. Se tuli lobotomian jälkioireina. Vihervassarit tät
      Maailman menoa
      25
      1352
    7. Lopetan ikävöinnin

      Ei meistä enää koskaan tule mitään. Olen ikävöinyt ja kaivannut enkä saa mitään vastakaikua ja lämpöä. Parempi erillään
      Ikävä
      3
      1231
    8. Ei ole liian myöhäistä..

      Tule mun luo ja katso silmiin, niin saadaan taas se sanaton yhteys ja sano sitten vain anteeksi rakas ja suutele ja hala
      Ikävä
      3
      962
    9. Ei osattu ratkaista etääntymistä

      Mä jäädyin eikä sulla ole taitoa sulattaa. Parempi antaa olla, vaikka toivoin jotain muuta. Miehelle.
      Ikävä
      115
      910
    10. Esprit hoitokdit Varkaudessa?

      Asun keskisuomessa ja käyn satunnaisesti äitini luona Varkaudessa. Äitin tarvitsee kohta hoitajan kotiin tai hoitokodin
      Varkaus
      103
      893
    Aihe