Sanan osajonojen lukumäärä

Sanan osajono on siitä järjestyksessä poimittujen kirjaimien muodostama sana. Esim. sanalla "KISSA" on osajonot (24 kpl)

['', 'A', 'I', 'IA', 'IS', 'ISA', 'ISS', 'ISSA', 'K', 'KA', 'KI', 'KIA', 'KIS', 'KISA', 'KISS', 'KISSA', 'KS', 'KSA', 'KSS', 'KSSA', 'S', 'SA', 'SS', 'SSA']

Nyt kysytään algoritmiä (tai löytyykö jopa jotain kaavaa) jolla laskea näiden määrä annetulle sanalle.

Tutkitaan sitten tapausta jossa sana on n:n pituinen binäärijono.

Esim. jonolla "01101" on osajonot (18 kpl)

['', '0', '00', '001', '01', '010', '0101', '011', '0110', '01101', '0111', '1', '10', '101', '11', '110', '1101', '111']

Mikä on suurin määrä osajonoja mitä n-binäärijonolla voi olla?
Mikä on keskiarvo?

3

195

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Varmistukseksi että laskut menee oikein, niin mitä saatte seuraavalle?

      "OSAJONOJEN LUKUMÄÄRÄN LASKEMINEN"

      (myös välit lasketaan merkeiksi). Itse saan 1545659216.

    • Ratkaisu: https://membolicsythod.home.blog/2020/02/29/sanan-osajonojen-lukumaara/

      Lisäkysymyksen ensimmäisen kohdan vastaus on f_{n 2} - 1, missä f_k on k:s Fibonacci luku.
      Suurin määrää saadaan selvästikin alternoivalla binäärijonolla, sillä aina kannattaa hypätä lähemmäksi, jotta saadaan enemmän kävelyjä (ja mikäli kaksi samaa merkkiä on peräkkäin aiheuttaa tämä toisen yli hyppäämisen edeltävästä merkistä (ja lähtö on -1 eli tyhjä, niin vaikka se olisi heti alussa, niin haittaa tulee)).
      Alternoivia on kaksi 0101.... ja 1010.... Näille osajonojen määrä, merkataan sitä a(n), on selvästi yhtäsuuri, sillä toinen saadaan toisesta muuttamalla ykköset nolliksi ja nollat ykkösiksi.

      Lasketaan nyt sanan 0101.... (päättyy joko 0 tai 1 riippuen n:n pariteetista) osajonot.
      Induktioaskel kaavan todistuksessa menee samaan tyyliin kuin mikä viimeksikin oli missä ratkaisuun tuli Fibonacci luvut. Jaetaan osajonot kolmeen luokkaan:
      - tyhjä jono
      - 0:lla alkavat
      - 1:llä alkavat

      Jos osajono v alkaa nollalla, niin silloin loppu eli v[1:] on 101... (pituus n-1):n osajono, induktio-oletuksen mukaan näitä on f_{n 1}-1.
      Jos alkaa ykkösellä, niin v[1:] taas on 010... (pituus n-2):n osajono, sillä ensimmäistä nollaa ei ole voitu käyttää, sillä alkoi ykkösellä ja niinkuin tuossa edelläkin se ensimmäinen ykkönen on voitu käyttää tai sitten ei, mutta se loppu on sen lopun osajono joka tapauksessa käytettiin se ensimmäinen ykkönen ekaan paaluun tai myöhemmin. Näitä on f_n - 1.
      Siis yhteensä

      a(n)
      = 1 a_{n-1} a_{n-2}
      = 1 f_{n 1} - 1 f_n - 1
      = f_{n 2} - 1

      • Tämä jono, kun muuten on täällä: https://oeis.org/A000071 ja siellä on yksi muoto, että mistä tuo tulee: "Number of 001-avoiding binary words of length n - 3", niin onko tuo jotenkin kombinatorisesti nähtävissä tuosta suoraan, kun vähän samaltahan tuo kuulostaa, että kahta nollaa ei tule peräkkäin ja sitten ykköstä. Jos merkataan uudella binäärijonolla sitä indeksien osajonoa, josta osajono muodostetaan niin että 0 merkkaa että ei tule mukaan ja 1 että tulee mukaan, niin olisiko se siitä jotenkin nähtävissä?


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. S-kauppa nosti hintoja, K-kauppa laski

      Elintarvikkeiden arvonlisävero laski vuodenvaihteessa 13,5 prosenttiin. S-kauppa siirsi alennuksen suoraan katteisiin pi
      Maailman menoa
      67
      5927
    2. Vilma Nissinen pyytää anteeksi rasistisia lausuntojaan

      Nöyrtyi kuten persut yleensäkin. On kyllä noloa tuollainen vätystely, kun ei ole miestä seisoa omien lausuntojensa takan
      Maailman menoa
      349
      5749
    3. Hiihtäjä Vilma Nissisen kommentit aiheutti paniikkia

      ja hernettä vedettiin nenään. Nissinen kertoi torstaina haastattelussa, kun häneltä kysyttiin, että tykkääkö hän hiihtä
      Maailman menoa
      93
      4731
    4. Huuto yltyy persujen piirissä Venezuelan johdosta.

      Kohta kakofonia yltyy kun persut tajuavat mitä Venezuelassa tapahtui. Von den Leydenki jo kipuilee kuten persut EU:ssa y
      Maailman menoa
      12
      2235
    5. Ikävä uutinen uudesta Unelmia Italiassa kaudesta - Iso pettymys tv-katsojille!

      Unelmia Italiassa -sarja kertoo Ellen Jokikunnaksen perheen elämästä Suomessa ja Italiassa. Nyt Ellen on kertonut tuleva
      Tv-sarjat
      18
      2048
    6. Nyt ottaa persua pattiin: sähköauto joulukuun myydyin

      🤣 prööt prööt pakoputkellaan pörisevää persua ottaa nyt saamaristi pattiin, kun paristoilla kulkeva sähköauto on noussu
      Maailman menoa
      52
      1952
    7. Ovatko Perussuomalaiset kommunisteja?

      Toiset sanovat että ovat, toiset sanovat että eivät. Ainakin heillä on paljon sen aatteen piirteitä, koska haluavat kont
      Maailman menoa
      43
      1870
    8. Martina vuokraa yksiötä

      Nyt on tarkka'ampujan yksiö vuokrattavana 800 e. Toivottavasti löytyy hyvä asukas.
      Kotimaiset julkkisjuorut
      251
      1211
    9. Jokaisella tytöllä on supervoimansa

      Millaisia ajatuksia artikkeli herättää? Mainos: Dove | ”Itsetuntoni oli ihan romuttunut” – Peppina Rosén haastaa tavan
      Sinkut
      203
      1114
    10. Voi kauhiaa: keikkapaikat keikahtavat juopottelun puutteessa!

      Vai ei tule rahaa artistille viinanmyynnin vähennyttyä. Missähän muualla kannattavuus korreloi myrkyn imemismäärän ka
      Maailman menoa
      64
      1061
    Aihe