Sanan osajonojen lukumäärä

Sanan osajono on siitä järjestyksessä poimittujen kirjaimien muodostama sana. Esim. sanalla "KISSA" on osajonot (24 kpl)

['', 'A', 'I', 'IA', 'IS', 'ISA', 'ISS', 'ISSA', 'K', 'KA', 'KI', 'KIA', 'KIS', 'KISA', 'KISS', 'KISSA', 'KS', 'KSA', 'KSS', 'KSSA', 'S', 'SA', 'SS', 'SSA']

Nyt kysytään algoritmiä (tai löytyykö jopa jotain kaavaa) jolla laskea näiden määrä annetulle sanalle.

Tutkitaan sitten tapausta jossa sana on n:n pituinen binäärijono.

Esim. jonolla "01101" on osajonot (18 kpl)

['', '0', '00', '001', '01', '010', '0101', '011', '0110', '01101', '0111', '1', '10', '101', '11', '110', '1101', '111']

Mikä on suurin määrä osajonoja mitä n-binäärijonolla voi olla?
Mikä on keskiarvo?

3

141

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Varmistukseksi että laskut menee oikein, niin mitä saatte seuraavalle?

      "OSAJONOJEN LUKUMÄÄRÄN LASKEMINEN"

      (myös välit lasketaan merkeiksi). Itse saan 1545659216.

    • Ratkaisu: https://membolicsythod.home.blog/2020/02/29/sanan-osajonojen-lukumaara/

      Lisäkysymyksen ensimmäisen kohdan vastaus on f_{n 2} - 1, missä f_k on k:s Fibonacci luku.
      Suurin määrää saadaan selvästikin alternoivalla binäärijonolla, sillä aina kannattaa hypätä lähemmäksi, jotta saadaan enemmän kävelyjä (ja mikäli kaksi samaa merkkiä on peräkkäin aiheuttaa tämä toisen yli hyppäämisen edeltävästä merkistä (ja lähtö on -1 eli tyhjä, niin vaikka se olisi heti alussa, niin haittaa tulee)).
      Alternoivia on kaksi 0101.... ja 1010.... Näille osajonojen määrä, merkataan sitä a(n), on selvästi yhtäsuuri, sillä toinen saadaan toisesta muuttamalla ykköset nolliksi ja nollat ykkösiksi.

      Lasketaan nyt sanan 0101.... (päättyy joko 0 tai 1 riippuen n:n pariteetista) osajonot.
      Induktioaskel kaavan todistuksessa menee samaan tyyliin kuin mikä viimeksikin oli missä ratkaisuun tuli Fibonacci luvut. Jaetaan osajonot kolmeen luokkaan:
      - tyhjä jono
      - 0:lla alkavat
      - 1:llä alkavat

      Jos osajono v alkaa nollalla, niin silloin loppu eli v[1:] on 101... (pituus n-1):n osajono, induktio-oletuksen mukaan näitä on f_{n 1}-1.
      Jos alkaa ykkösellä, niin v[1:] taas on 010... (pituus n-2):n osajono, sillä ensimmäistä nollaa ei ole voitu käyttää, sillä alkoi ykkösellä ja niinkuin tuossa edelläkin se ensimmäinen ykkönen on voitu käyttää tai sitten ei, mutta se loppu on sen lopun osajono joka tapauksessa käytettiin se ensimmäinen ykkönen ekaan paaluun tai myöhemmin. Näitä on f_n - 1.
      Siis yhteensä

      a(n)
      = 1 a_{n-1} a_{n-2}
      = 1 f_{n 1} - 1 f_n - 1
      = f_{n 2} - 1

      • Tämä jono, kun muuten on täällä: https://oeis.org/A000071 ja siellä on yksi muoto, että mistä tuo tulee: "Number of 001-avoiding binary words of length n - 3", niin onko tuo jotenkin kombinatorisesti nähtävissä tuosta suoraan, kun vähän samaltahan tuo kuulostaa, että kahta nollaa ei tule peräkkäin ja sitten ykköstä. Jos merkataan uudella binäärijonolla sitä indeksien osajonoa, josta osajono muodostetaan niin että 0 merkkaa että ei tule mukaan ja 1 että tulee mukaan, niin olisiko se siitä jotenkin nähtävissä?


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Takaisin ylös

    Luetuimmat keskustelut

    1. 24h Kirppis

      Olen muuttamassa paikkakunnalle ja mietin olisiko tälläiselle liikkeelle tarvetta alueella?
      Jämsä
      13
      4555
    2. Suomessa eletään liian pitkään

      "Ihmisten on kuoltava" Asiantuntija varoittaa: Suomi ei ole valmis siihen, että niin moni elää pitkään: ”Kaiken täytyy
      Maailman menoa
      342
      3702
    3. Kerotakaa joensuun kontiolahden paiholan laitoksesta jotain

      Mun kaveri joutuu paiholan laitokseen nyt lähi aikoina niin voisko ihmiset kertoa minkälaista siellä on tarinoita jne ja
      Joensuu
      36
      3416
    4. Voitaisko olla kavereita?

      Haluaisin aloittaa puhtaalta pöydältä sinun kanssasi, tabula rasa. Minä lopetan sinun perääsi haikailun, ja sitten sinäk
      Tunteet
      18
      2880
    5. Deodoranttiteollisuus

      Annan ilmaisen vinkin. Kyseinen teollisuus voisi alkaa valmistaa kuolleen ruumiin hajua. Olisi varma hittituote, ainakin
      Jämsä
      11
      2539
    6. 273
      2273
    7. Martinan mies on Suomessa.

      Siellä se on Martinan instassa ja täällä on jo ero tullut. Voi että kun huvittaa...
      Kotimaiset julkkisjuorut
      307
      1733
    8. Näyttääkö kaivattusi

      Miten hyvältä ❤️
      Ikävä
      96
      1692
    9. Maistaisitko sinä näitä valmisruokia?

      Terhi Kinnari ja Kinnarin tila voitti Suomalainen menestysresepti -kisan. Makuja Kinnarin tilan kaurapohjaisissa aterioi
      Einekset
      46
      1439
    10. Rukoilimme Länsimuurilla 2000 vuoden jälkeen, Jumalamme oli antanut meille kaiken takaisin

      Western Wall, In our Hands. 55th Para. https://www.youtube.com/watch?v=u4BJAppyCSo https://en.wikipedia.org/wiki/55th_
      Ateismi
      8
      1163
    Aihe