Yleistetty sivun keskipisteen sivuava ympyrä

Säännöllisen n-kulmion sivun keskipisteen ja tämän sivun muodostavien kärkien vierekkäisten (sivusta ulospäin kumpaankin suuntaan seuraavien) kärkien kautta piirretään ympyrä.
Tämä kuva luultavasti auttaa hahmottamaan tilannetta: https://aijaa.com/fGuWtH

Tehtävä ei ole tarkasti rajattu, laskekaa tuosta mitä vain. Ehkä nyt se miten ympyrän säde r suhtautuu n-kulmion sivuun tulee ensimmäisenä mieleen.

[Tämä meni aluksi vahingossa väärälle palstalle, mutta laitetaan nyt tänne.]

8

212

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Tästä tuli mieleen eräs vanha tehtävä , jossa laskettiin ympyrän alaa, vaikka se nyt ei varsinaisesti tähän liitykään.

      Piirretään r-säteisen ympyrän sisään n kulmio. Sen keskuskulma on 360/n

      Piirretään ulkopuolelle 2*n kulmio. Sen keskuskulma on 180/n

      Ulkopuolelle piirretyn monikulmion ala=tan(90/n)*2n*r^2

      Sisäpuolelle piirretyn monikulmion ala=sin(180/n)*cos(180/n)*n*r^2

      jos noihin sijoittaa esim. n=1000, niin

      ulkoala on 3,141595*r^2
      sisäala on 3,14157*r^2 , ympyrän ala on siis noiden välissä

    • Anonyymi

      "Tehtävä ei ole tarkasti rajattu, laskekaa tuosta mitä vain."

      Oikea tarkasti rajattu vastaus on kolme koria kaljaa ja neljä pulloa kossua.

      • Anonyymi

        "Tuoppi olutta ja kortteli viinaa on sopiva mitta ja määrä väsyneen miehen kurkkuun ja päähän"
        kertoo A. Kivi teoksessaan "Seitsemän veljestä".


    • Anonyymi

      Lasketaan nyt tota viimestä, vaikka taitaa se edellinenkin mennä vastaavasti. Hiukan hankala laskettava ja siksi en edes yritä laskea sitä loppuun:
      https://aijaa.com/zrDR7U

    • Tässä visualisaatio, jossa n:ää voi säätä (tuosta pisteestä A voi vetää ja se säätää n:ää sitä kautta):

      https://www.desmos.com/calculator/oc3ofqu6da

      C on halutun ympyrän keskipiste, kun taas n-kulmio on origokeskinen ja jokainen kärki etäisyydellä 1 origosta.
      Olen tuossa jo käyttänyt kaava ympyrän säteelle r ja siellähän se on nähtävissä, mutta tässä myös todistus ja lisäksi lasku, että r --> 9/8, kun n --> ∞:

      https://aijaa.com/m4IMCX

      • Kokeilin myös sillä tavoin, että pisteet tulkitaan kompleksiluvuiksi ja sitten käytetään lausetta, että neljä pistettä ovat ympyrällä joss niiden kaksoissuhde on reaalinen, ks. https://math.stackexchange.com/questions/39153/how-do-i-calculate-the-equation-of-a-circle-given-3-complex-numbers .
        Nythän olisi
        z1 = cos(pi/n)
        z2 = cos(3*pi/n) i*sin(3*pi/n)
        z3 = cos(3*pi/n) - i*sin(3*pi/n)

        mutta kaavasta (että kaksoissuhteen imaginääriosa on 0) tulee sen verran sotkuinen, että en siitä kyllä nää miten saadaan ympyrän yhtälö selviteltyä. Tuolla SE-linkissähän olisi kyllä suora kaava keskipisteelle ja säteellekin, mutta vaikealta näyttää sitäkin kautta.


      • Anonyymi

        Tuli mieleen, että täytyyhän tuo raja-arvo tulla esiin noista minunkin yhtälöistäni, kun ne muutenkin antavat oikeita tuloksia, ja tuossa paperissa sitä on väännetty.
        Siinä vaan poikkeavat nuo merkinnät, eli tuossa ympyrän säde on 1 ja monikulmion "säde" on r, ja r lähenee silloin 8/9 kun kulma lähenee nollaa.
        https://aijaa.com/GMabSf


      • Anonyymi kirjoitti:

        Tuli mieleen, että täytyyhän tuo raja-arvo tulla esiin noista minunkin yhtälöistäni, kun ne muutenkin antavat oikeita tuloksia, ja tuossa paperissa sitä on väännetty.
        Siinä vaan poikkeavat nuo merkinnät, eli tuossa ympyrän säde on 1 ja monikulmion "säde" on r, ja r lähenee silloin 8/9 kun kulma lähenee nollaa.
        https://aijaa.com/GMabSf

        Tuohan onkin paljon simppelimpi tapa!
        Jos vielä yleistetään siten, että ympyrä leikkaakin m:nnsiä kärkiä sivun kärjistä lukien, niin sekinhän ratkeaa tuolla tavoin vain muuttamalla keskimmäisen kolmion kulmaa ja korvaamalla kaavassa arvon 3pi/n arvolla (2m 1)pi/n.
        Jos sitä alkuperäistä tehtävää eli neliötä miettii, niin ehkä siinä "olikin niin", että otetaan ne viimeiset kärjet eikä ensimmäisiä (neliöllähän ne on sama asia). Silloinhan ympyrä approksimoi erittäin hyvin n-kulmiota.

        Voisikin asettaa lisätehtävän: Mikä on ympyrän ja n-kulmion piirien suhde, kun ympyrä kulkee yhden sivun keskipisteen kautta ja tästä sivusta laskien viimeisten kärkien kautta (jos n pariton, niin viimeisen kärjen; sivun keskipisteen tangenteeraaminen määrä ympyrän täysin myös tässä tapauksessa).

        Tein tästä yleistyksestäkin vielä Desmos-simun: https://www.desmos.com/calculator/7scgg5gy5s


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Marin sitä, Marin tätä, yhyy yhyy, persut jaksaa vollottaa

      On nuo persut kyllä surkeaa porukkaa. Edelleen itkevät jonkun Marinin perään, vaikka itse ovat tuhonneet Suomen kansan t
      Maailman menoa
      131
      3787
    2. Ikävä sinua..

      Kauan on aikaa kulunut ja asioita tapahtunut. Mutta sinä M-ies olet edelleen vain mielessäni. En tiedä loinko sinusta va
      Ikävä
      20
      1763
    3. Riikka Purra: "Kokoomus haluaa leikata pienituloisten etuuksista - Se ei meille käy"

      Näin vakuutti persujen Purra edellisten eduskunta vaalien alla,. https://www.ku.fi/artikkeli/4910942-kun-uudessa-videos
      Maailman menoa
      27
      1613
    4. Riikka Purra sanoo, että sietokykyni vittumaisiin ihmisiin alkaa olla lopussa.

      https://www.iltalehti.fi/politiikka/a/be8f784d-fa24-44d6-b59a-b9b83b629b28 Riikka Purra sanoo medialle suorat sanat vitt
      Maailman menoa
      302
      1438
    5. Muistattekos kuinka persujen Salainen Akentti kävi Putinin leirillä

      Hakemassa jamesbondimaista vakoiluoppia paikan päällä Venäjällä? Siitä ei edes Suomea suojeleva viranomainen saanut puhu
      Maailman menoa
      20
      1413
    6. Lindtmanin pääministeriys lähenee päivä päivältä

      Suomen kansan kissanpäivät alkavat siitä hetkestä, kun presidentti Stubb on tehnyt nimityksen. Ainoastaan ylin tulodesi
      Maailman menoa
      41
      1330
    7. Tuntuuko sinusta mies

      että olet jossain, mutta sydämessäsi haluat olla muualla. Suunnittelet kaikkea kivaa ja olet innolla mukana, mutta silti
      Ikävä
      16
      994
    8. Kapiainen siviiliesimies, Herra suuri Herra

      Sotilaana kyvytön, johtajana munaton ja kotona tossun alla. Se on upseerin uran tuen pää, seinään ajo. Mutta aina löytyy
      Sodankylä
      76
      988
    9. Väärä pää tutustumiseen

      Mikä ihme on, että miehet haluavat ensimmäisenä sänkyyn? Onko nykyään niin helppo saada nainen peittojensa alle.. tai pä
      Ikävä
      127
      944
    10. Oon kyllä välillä ollut susta

      Nainen huolissani, en oo niin sydämetön mitä tunnut ajattelevan
      Ikävä
      73
      858
    Aihe