Yleistetty sivun keskipisteen sivuava ympyrä

Säännöllisen n-kulmion sivun keskipisteen ja tämän sivun muodostavien kärkien vierekkäisten (sivusta ulospäin kumpaankin suuntaan seuraavien) kärkien kautta piirretään ympyrä.
Tämä kuva luultavasti auttaa hahmottamaan tilannetta: https://aijaa.com/fGuWtH

Tehtävä ei ole tarkasti rajattu, laskekaa tuosta mitä vain. Ehkä nyt se miten ympyrän säde r suhtautuu n-kulmion sivuun tulee ensimmäisenä mieleen.

[Tämä meni aluksi vahingossa väärälle palstalle, mutta laitetaan nyt tänne.]

8

101

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Tästä tuli mieleen eräs vanha tehtävä , jossa laskettiin ympyrän alaa, vaikka se nyt ei varsinaisesti tähän liitykään.

      Piirretään r-säteisen ympyrän sisään n kulmio. Sen keskuskulma on 360/n

      Piirretään ulkopuolelle 2*n kulmio. Sen keskuskulma on 180/n

      Ulkopuolelle piirretyn monikulmion ala=tan(90/n)*2n*r^2

      Sisäpuolelle piirretyn monikulmion ala=sin(180/n)*cos(180/n)*n*r^2

      jos noihin sijoittaa esim. n=1000, niin

      ulkoala on 3,141595*r^2
      sisäala on 3,14157*r^2 , ympyrän ala on siis noiden välissä

    • Anonyymi

      "Tehtävä ei ole tarkasti rajattu, laskekaa tuosta mitä vain."

      Oikea tarkasti rajattu vastaus on kolme koria kaljaa ja neljä pulloa kossua.

      • Anonyymi

        "Tuoppi olutta ja kortteli viinaa on sopiva mitta ja määrä väsyneen miehen kurkkuun ja päähän"
        kertoo A. Kivi teoksessaan "Seitsemän veljestä".


    • Anonyymi

      Lasketaan nyt tota viimestä, vaikka taitaa se edellinenkin mennä vastaavasti. Hiukan hankala laskettava ja siksi en edes yritä laskea sitä loppuun:
      https://aijaa.com/zrDR7U

    • Tässä visualisaatio, jossa n:ää voi säätä (tuosta pisteestä A voi vetää ja se säätää n:ää sitä kautta):

      https://www.desmos.com/calculator/oc3ofqu6da

      C on halutun ympyrän keskipiste, kun taas n-kulmio on origokeskinen ja jokainen kärki etäisyydellä 1 origosta.
      Olen tuossa jo käyttänyt kaava ympyrän säteelle r ja siellähän se on nähtävissä, mutta tässä myös todistus ja lisäksi lasku, että r --> 9/8, kun n --> ∞:

      https://aijaa.com/m4IMCX

      • Kokeilin myös sillä tavoin, että pisteet tulkitaan kompleksiluvuiksi ja sitten käytetään lausetta, että neljä pistettä ovat ympyrällä joss niiden kaksoissuhde on reaalinen, ks. https://math.stackexchange.com/questions/39153/how-do-i-calculate-the-equation-of-a-circle-given-3-complex-numbers .
        Nythän olisi
        z1 = cos(pi/n)
        z2 = cos(3*pi/n) i*sin(3*pi/n)
        z3 = cos(3*pi/n) - i*sin(3*pi/n)

        mutta kaavasta (että kaksoissuhteen imaginääriosa on 0) tulee sen verran sotkuinen, että en siitä kyllä nää miten saadaan ympyrän yhtälö selviteltyä. Tuolla SE-linkissähän olisi kyllä suora kaava keskipisteelle ja säteellekin, mutta vaikealta näyttää sitäkin kautta.


      • Anonyymi

        Tuli mieleen, että täytyyhän tuo raja-arvo tulla esiin noista minunkin yhtälöistäni, kun ne muutenkin antavat oikeita tuloksia, ja tuossa paperissa sitä on väännetty.
        Siinä vaan poikkeavat nuo merkinnät, eli tuossa ympyrän säde on 1 ja monikulmion "säde" on r, ja r lähenee silloin 8/9 kun kulma lähenee nollaa.
        https://aijaa.com/GMabSf


      • Anonyymi kirjoitti:

        Tuli mieleen, että täytyyhän tuo raja-arvo tulla esiin noista minunkin yhtälöistäni, kun ne muutenkin antavat oikeita tuloksia, ja tuossa paperissa sitä on väännetty.
        Siinä vaan poikkeavat nuo merkinnät, eli tuossa ympyrän säde on 1 ja monikulmion "säde" on r, ja r lähenee silloin 8/9 kun kulma lähenee nollaa.
        https://aijaa.com/GMabSf

        Tuohan onkin paljon simppelimpi tapa!
        Jos vielä yleistetään siten, että ympyrä leikkaakin m:nnsiä kärkiä sivun kärjistä lukien, niin sekinhän ratkeaa tuolla tavoin vain muuttamalla keskimmäisen kolmion kulmaa ja korvaamalla kaavassa arvon 3pi/n arvolla (2m 1)pi/n.
        Jos sitä alkuperäistä tehtävää eli neliötä miettii, niin ehkä siinä "olikin niin", että otetaan ne viimeiset kärjet eikä ensimmäisiä (neliöllähän ne on sama asia). Silloinhan ympyrä approksimoi erittäin hyvin n-kulmiota.

        Voisikin asettaa lisätehtävän: Mikä on ympyrän ja n-kulmion piirien suhde, kun ympyrä kulkee yhden sivun keskipisteen kautta ja tästä sivusta laskien viimeisten kärkien kautta (jos n pariton, niin viimeisen kärjen; sivun keskipisteen tangenteeraaminen määrä ympyrän täysin myös tässä tapauksessa).

        Tein tästä yleistyksestäkin vielä Desmos-simun: https://www.desmos.com/calculator/7scgg5gy5s


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. 24h Kirppis

      Olen muuttamassa paikkakunnalle ja mietin olisiko tälläiselle liikkeelle tarvetta alueella?
      Jämsä
      13
      3708
    2. Kerotakaa joensuun kontiolahden paiholan laitoksesta jotain

      Mun kaveri joutuu paiholan laitokseen nyt lähi aikoina niin voisko ihmiset kertoa minkälaista siellä on tarinoita jne ja
      Joensuu
      27
      2900
    3. Suomessa eletään liian pitkään

      "Ihmisten on kuoltava" Asiantuntija varoittaa: Suomi ei ole valmis siihen, että niin moni elää pitkään: ”Kaiken täytyy
      Maailman menoa
      268
      2699
    4. Deodoranttiteollisuus

      Annan ilmaisen vinkin. Kyseinen teollisuus voisi alkaa valmistaa kuolleen ruumiin hajua. Olisi varma hittituote, ainakin
      Jämsä
      5
      1885
    5. 219
      1418
    6. Näyttääkö kaivattusi

      Miten hyvältä ❤️
      Ikävä
      75
      1231
    7. Martinan mies on Suomessa.

      Siellä se on Martinan instassa ja täällä on jo ero tullut. Voi että kun huvittaa...
      Kotimaiset julkkisjuorut
      156
      1037
    8. Voitaisko olla kavereita?

      Haluaisin aloittaa puhtaalta pöydältä sinun kanssasi, tabula rasa. Minä lopetan sinun perääsi haikailun, ja sitten sinäk
      Tunteet
      2
      967
    9. Maistaisitko sinä näitä valmisruokia?

      Terhi Kinnari ja Kinnarin tila voitti Suomalainen menestysresepti -kisan. Makuja Kinnarin tilan kaurapohjaisissa aterioi
      Einekset
      30
      963
    10. Tuo yksi tampio vielä ilmeisesti kuvittelee

      Että joku itkee peräänsä täällä vinkuen jotain utopistista kadonnutta rakkauttaan kaksoisliekit silmissä leiskuen. Pyhä
      Ikävä
      90
      917
    Aihe