Neljän positiivisen neliön summa

Kaikkihan tuntevat Lagrangen neljän neliön lauseen: https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem , jonka mukaan jokainen luonnollinen luku voidaan kirjoittaa neljän neliön summana. Mutta siinä neliöt saavat olla myös nollia. Entä jos vaaditaan, että kaikki neljä neliötä ovat positiivisia. Mitä lukuja ei tällöin pystytä esittämään?

Olen löytänyt kolme eri "tyyppiä" lukuja joita ei pysty esittämään (en nyt paljasta mitä ne ovat, niin jää keksimisen ilo). Lisäksi joitain alkupään lukuja ei näytä pystyvän. Mutta en kylläkään osaa todistaa onko näiden kolmen tyypin lisäksi äärettömästi jotain muita lukuja vai onko nuo alkupään "poikkeamat" vain poikkeamia.

3

149

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
      • Joo, noinhan se meneekin. Viimenen kohta tulee tosiaan siitä kun neljän neliön summa voi olla 0 (mod 8) vain jos jokainen neliö on 0 tai 4 (mod 8) eli jokainen luku, josta neliö otetaan on parillinen ja näin 4:lla voidaan jakaa ja löydetään pienempi.

        Itse perustelin nuo, että muotoa
        2^(2k 1)
        2^(4k 1)*7
        2^(4k-1)*3
        eivät ole neljän positiivisen neliön summia, käyttämällä Jacobin neljän neliön lausetta: https://en.wikipedia.org/wiki/Jacobi's_four-square_theorem , joka kertoo kuinka monella tavalla luvun n voi esittää neljän neliön summana (kun sallitaan myös 0 ja lisäksi lasketaan mukaan kaikki eri järjestykset ja lukujen merkit (eli negatiivisetkin sallitaan)). Tätä lukumäärää merkitään r_4(n):llä.

        Tein niin että löysin tarpeeksi esityksiä, joissa on nolla mukana, jotta niistä jo tulee tuo Jacobin kertoma määrä. Tällöinhän kokonaan positiivisia ei voi enää olla.

        Eka:
        2^(2k 1) = (2^k)^2 (2^k)^2
        tälläisia esityksiä on 4C2 * 2^2 = 24 (valitaan kaksi paikkaa neljästä, joihin 2^k pistetään ja sitten /- kummallekin. Mutta Jacobin mukaan r_4(2^(2k 1)) = 24 * (1).

        Toka:
        2^(4k-1) * 7
        = 2^(4k-2) * (1 4 9)
        = 2^(2k-1)^2 2^(2k)^2 (3^(2k-1))^2

        tässä taas on 4 * 3! * 2^3 = 192 = 24*(1 7) = r_4(2^(4k-1) * 7) esitystä.

        Vastaavasti kolmas tapaus, siihen tulee kolme positiivista, joista kaksi on yhtäsuuria.

        Jännästi muuten ilmaantuu nuo luvut 3 ja 7, jotka kahden ja kolmen neliön tapauksissa on niitä "ongelmallisia" lukuja esityksen olemassaololle.


      • minkkilaukku kirjoitti:

        Joo, noinhan se meneekin. Viimenen kohta tulee tosiaan siitä kun neljän neliön summa voi olla 0 (mod 8) vain jos jokainen neliö on 0 tai 4 (mod 8) eli jokainen luku, josta neliö otetaan on parillinen ja näin 4:lla voidaan jakaa ja löydetään pienempi.

        Itse perustelin nuo, että muotoa
        2^(2k 1)
        2^(4k 1)*7
        2^(4k-1)*3
        eivät ole neljän positiivisen neliön summia, käyttämällä Jacobin neljän neliön lausetta: https://en.wikipedia.org/wiki/Jacobi's_four-square_theorem , joka kertoo kuinka monella tavalla luvun n voi esittää neljän neliön summana (kun sallitaan myös 0 ja lisäksi lasketaan mukaan kaikki eri järjestykset ja lukujen merkit (eli negatiivisetkin sallitaan)). Tätä lukumäärää merkitään r_4(n):llä.

        Tein niin että löysin tarpeeksi esityksiä, joissa on nolla mukana, jotta niistä jo tulee tuo Jacobin kertoma määrä. Tällöinhän kokonaan positiivisia ei voi enää olla.

        Eka:
        2^(2k 1) = (2^k)^2 (2^k)^2
        tälläisia esityksiä on 4C2 * 2^2 = 24 (valitaan kaksi paikkaa neljästä, joihin 2^k pistetään ja sitten /- kummallekin. Mutta Jacobin mukaan r_4(2^(2k 1)) = 24 * (1).

        Toka:
        2^(4k-1) * 7
        = 2^(4k-2) * (1 4 9)
        = 2^(2k-1)^2 2^(2k)^2 (3^(2k-1))^2

        tässä taas on 4 * 3! * 2^3 = 192 = 24*(1 7) = r_4(2^(4k-1) * 7) esitystä.

        Vastaavasti kolmas tapaus, siihen tulee kolme positiivista, joista kaksi on yhtäsuuria.

        Jännästi muuten ilmaantuu nuo luvut 3 ja 7, jotka kahden ja kolmen neliön tapauksissa on niitä "ongelmallisia" lukuja esityksen olemassaololle.

        Tuli virhe riville
        = 2^(2k-1)^2 2^(2k)^2 (3^(2k-1))^2
        pitäisi olla
        = 2^(2k-1)^2 (2^(2k))^2 (3*2^(2k-1))^2


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. 24h Kirppis

      Olen muuttamassa paikkakunnalle ja mietin olisiko tälläiselle liikkeelle tarvetta alueella?
      Jämsä
      13
      3708
    2. Kerotakaa joensuun kontiolahden paiholan laitoksesta jotain

      Mun kaveri joutuu paiholan laitokseen nyt lähi aikoina niin voisko ihmiset kertoa minkälaista siellä on tarinoita jne ja
      Joensuu
      27
      2900
    3. Suomessa eletään liian pitkään

      "Ihmisten on kuoltava" Asiantuntija varoittaa: Suomi ei ole valmis siihen, että niin moni elää pitkään: ”Kaiken täytyy
      Maailman menoa
      268
      2699
    4. Deodoranttiteollisuus

      Annan ilmaisen vinkin. Kyseinen teollisuus voisi alkaa valmistaa kuolleen ruumiin hajua. Olisi varma hittituote, ainakin
      Jämsä
      5
      1885
    5. 219
      1418
    6. Näyttääkö kaivattusi

      Miten hyvältä ❤️
      Ikävä
      75
      1231
    7. Martinan mies on Suomessa.

      Siellä se on Martinan instassa ja täällä on jo ero tullut. Voi että kun huvittaa...
      Kotimaiset julkkisjuorut
      156
      1037
    8. Voitaisko olla kavereita?

      Haluaisin aloittaa puhtaalta pöydältä sinun kanssasi, tabula rasa. Minä lopetan sinun perääsi haikailun, ja sitten sinäk
      Tunteet
      2
      967
    9. Maistaisitko sinä näitä valmisruokia?

      Terhi Kinnari ja Kinnarin tila voitti Suomalainen menestysresepti -kisan. Makuja Kinnarin tilan kaurapohjaisissa aterioi
      Einekset
      30
      963
    10. Tuo yksi tampio vielä ilmeisesti kuvittelee

      Että joku itkee peräänsä täällä vinkuen jotain utopistista kadonnutta rakkauttaan kaksoisliekit silmissä leiskuen. Pyhä
      Ikävä
      90
      917
    Aihe