Kaikkihan tuntevat Lagrangen neljän neliön lauseen: https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem , jonka mukaan jokainen luonnollinen luku voidaan kirjoittaa neljän neliön summana. Mutta siinä neliöt saavat olla myös nollia. Entä jos vaaditaan, että kaikki neljä neliötä ovat positiivisia. Mitä lukuja ei tällöin pystytä esittämään?
Olen löytänyt kolme eri "tyyppiä" lukuja joita ei pysty esittämään (en nyt paljasta mitä ne ovat, niin jää keksimisen ilo). Lisäksi joitain alkupään lukuja ei näytä pystyvän. Mutta en kylläkään osaa todistaa onko näiden kolmen tyypin lisäksi äärettömästi jotain muita lukuja vai onko nuo alkupään "poikkeamat" vain poikkeamia.
Neljän positiivisen neliön summa
3
301
Vastaukset
Joo, noinhan se meneekin. Viimenen kohta tulee tosiaan siitä kun neljän neliön summa voi olla 0 (mod 8) vain jos jokainen neliö on 0 tai 4 (mod 8) eli jokainen luku, josta neliö otetaan on parillinen ja näin 4:lla voidaan jakaa ja löydetään pienempi.
Itse perustelin nuo, että muotoa
2^(2k 1)
2^(4k 1)*7
2^(4k-1)*3
eivät ole neljän positiivisen neliön summia, käyttämällä Jacobin neljän neliön lausetta: https://en.wikipedia.org/wiki/Jacobi's_four-square_theorem , joka kertoo kuinka monella tavalla luvun n voi esittää neljän neliön summana (kun sallitaan myös 0 ja lisäksi lasketaan mukaan kaikki eri järjestykset ja lukujen merkit (eli negatiivisetkin sallitaan)). Tätä lukumäärää merkitään r_4(n):llä.
Tein niin että löysin tarpeeksi esityksiä, joissa on nolla mukana, jotta niistä jo tulee tuo Jacobin kertoma määrä. Tällöinhän kokonaan positiivisia ei voi enää olla.
Eka:
2^(2k 1) = (2^k)^2 (2^k)^2
tälläisia esityksiä on 4C2 * 2^2 = 24 (valitaan kaksi paikkaa neljästä, joihin 2^k pistetään ja sitten /- kummallekin. Mutta Jacobin mukaan r_4(2^(2k 1)) = 24 * (1).
Toka:
2^(4k-1) * 7
= 2^(4k-2) * (1 4 9)
= 2^(2k-1)^2 2^(2k)^2 (3^(2k-1))^2
tässä taas on 4 * 3! * 2^3 = 192 = 24*(1 7) = r_4(2^(4k-1) * 7) esitystä.
Vastaavasti kolmas tapaus, siihen tulee kolme positiivista, joista kaksi on yhtäsuuria.
Jännästi muuten ilmaantuu nuo luvut 3 ja 7, jotka kahden ja kolmen neliön tapauksissa on niitä "ongelmallisia" lukuja esityksen olemassaololle.minkkilaukku kirjoitti:
Joo, noinhan se meneekin. Viimenen kohta tulee tosiaan siitä kun neljän neliön summa voi olla 0 (mod 8) vain jos jokainen neliö on 0 tai 4 (mod 8) eli jokainen luku, josta neliö otetaan on parillinen ja näin 4:lla voidaan jakaa ja löydetään pienempi.
Itse perustelin nuo, että muotoa
2^(2k 1)
2^(4k 1)*7
2^(4k-1)*3
eivät ole neljän positiivisen neliön summia, käyttämällä Jacobin neljän neliön lausetta: https://en.wikipedia.org/wiki/Jacobi's_four-square_theorem , joka kertoo kuinka monella tavalla luvun n voi esittää neljän neliön summana (kun sallitaan myös 0 ja lisäksi lasketaan mukaan kaikki eri järjestykset ja lukujen merkit (eli negatiivisetkin sallitaan)). Tätä lukumäärää merkitään r_4(n):llä.
Tein niin että löysin tarpeeksi esityksiä, joissa on nolla mukana, jotta niistä jo tulee tuo Jacobin kertoma määrä. Tällöinhän kokonaan positiivisia ei voi enää olla.
Eka:
2^(2k 1) = (2^k)^2 (2^k)^2
tälläisia esityksiä on 4C2 * 2^2 = 24 (valitaan kaksi paikkaa neljästä, joihin 2^k pistetään ja sitten /- kummallekin. Mutta Jacobin mukaan r_4(2^(2k 1)) = 24 * (1).
Toka:
2^(4k-1) * 7
= 2^(4k-2) * (1 4 9)
= 2^(2k-1)^2 2^(2k)^2 (3^(2k-1))^2
tässä taas on 4 * 3! * 2^3 = 192 = 24*(1 7) = r_4(2^(4k-1) * 7) esitystä.
Vastaavasti kolmas tapaus, siihen tulee kolme positiivista, joista kaksi on yhtäsuuria.
Jännästi muuten ilmaantuu nuo luvut 3 ja 7, jotka kahden ja kolmen neliön tapauksissa on niitä "ongelmallisia" lukuja esityksen olemassaololle.Tuli virhe riville
= 2^(2k-1)^2 2^(2k)^2 (3^(2k-1))^2
pitäisi olla
= 2^(2k-1)^2 (2^(2k))^2 (3*2^(2k-1))^2
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Mitä aiot tehdä uudenvuoden aattona
Mitä olet suunnitellut tekeväsi uudenvuoden aattona ja aiotko ensi vuonna tehdä jotain muutoksia tai uudenvuoden lupauks2074516Marin sitä, Marin tätä, yhyy yhyy, persut jaksaa vollottaa
On nuo persut kyllä surkeaa porukkaa. Edelleen itkevät jonkun Marinin perään, vaikka itse ovat tuhonneet Suomen kansan t993267Väestönsiirtoa itään?
Ano "the Russo" Turtiainen sai poliittisen turvapaikan Venäjältä. Pian lähtee varmaan Nazima Nuzima ja Kiljusen väki per881777Ikävä sinua..
Kauan on aikaa kulunut ja asioita tapahtunut. Mutta sinä M-ies olet edelleen vain mielessäni. En tiedä loinko sinusta va131387Muistattekos kuinka persujen Salainen Akentti kävi Putinin leirillä
Hakemassa jamesbondimaista vakoiluoppia paikan päällä Venäjällä? Siitä ei edes Suomea suojeleva viranomainen saanut puhu181346Vuoden luetuimmat: Mikä on Pelle Miljoonan taiteilijaeläkkeen suuruus?
Pelle Miljoonan eläkkeen suuruus kiinnosti lukijoita tänä vuonna. Artikkeli on Suomi24 Viihteen luetuimpia juttuja v. 20241213- 521148
Riikka Purra sanoo, että sietokykyni vittumaisiin ihmisiin alkaa olla lopussa.
https://www.iltalehti.fi/politiikka/a/be8f784d-fa24-44d6-b59a-b9b83b629b28 Riikka Purra sanoo medialle suorat sanat vitt2491144Lindtmanin pääministeriys lähenee päivä päivältä
Suomen kansan kissanpäivät alkavat siitä hetkestä, kun presidentti Stubb on tehnyt nimityksen. Ainoastaan ylin tulodesi101131- 551059
