Kaikkihan tuntevat Lagrangen neljän neliön lauseen: https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem , jonka mukaan jokainen luonnollinen luku voidaan kirjoittaa neljän neliön summana. Mutta siinä neliöt saavat olla myös nollia. Entä jos vaaditaan, että kaikki neljä neliötä ovat positiivisia. Mitä lukuja ei tällöin pystytä esittämään?
Olen löytänyt kolme eri "tyyppiä" lukuja joita ei pysty esittämään (en nyt paljasta mitä ne ovat, niin jää keksimisen ilo). Lisäksi joitain alkupään lukuja ei näytä pystyvän. Mutta en kylläkään osaa todistaa onko näiden kolmen tyypin lisäksi äärettömästi jotain muita lukuja vai onko nuo alkupään "poikkeamat" vain poikkeamia.
Neljän positiivisen neliön summa
3
204
Vastaukset
Joo, noinhan se meneekin. Viimenen kohta tulee tosiaan siitä kun neljän neliön summa voi olla 0 (mod 8) vain jos jokainen neliö on 0 tai 4 (mod 8) eli jokainen luku, josta neliö otetaan on parillinen ja näin 4:lla voidaan jakaa ja löydetään pienempi.
Itse perustelin nuo, että muotoa
2^(2k 1)
2^(4k 1)*7
2^(4k-1)*3
eivät ole neljän positiivisen neliön summia, käyttämällä Jacobin neljän neliön lausetta: https://en.wikipedia.org/wiki/Jacobi's_four-square_theorem , joka kertoo kuinka monella tavalla luvun n voi esittää neljän neliön summana (kun sallitaan myös 0 ja lisäksi lasketaan mukaan kaikki eri järjestykset ja lukujen merkit (eli negatiivisetkin sallitaan)). Tätä lukumäärää merkitään r_4(n):llä.
Tein niin että löysin tarpeeksi esityksiä, joissa on nolla mukana, jotta niistä jo tulee tuo Jacobin kertoma määrä. Tällöinhän kokonaan positiivisia ei voi enää olla.
Eka:
2^(2k 1) = (2^k)^2 (2^k)^2
tälläisia esityksiä on 4C2 * 2^2 = 24 (valitaan kaksi paikkaa neljästä, joihin 2^k pistetään ja sitten /- kummallekin. Mutta Jacobin mukaan r_4(2^(2k 1)) = 24 * (1).
Toka:
2^(4k-1) * 7
= 2^(4k-2) * (1 4 9)
= 2^(2k-1)^2 2^(2k)^2 (3^(2k-1))^2
tässä taas on 4 * 3! * 2^3 = 192 = 24*(1 7) = r_4(2^(4k-1) * 7) esitystä.
Vastaavasti kolmas tapaus, siihen tulee kolme positiivista, joista kaksi on yhtäsuuria.
Jännästi muuten ilmaantuu nuo luvut 3 ja 7, jotka kahden ja kolmen neliön tapauksissa on niitä "ongelmallisia" lukuja esityksen olemassaololle.minkkilaukku kirjoitti:
Joo, noinhan se meneekin. Viimenen kohta tulee tosiaan siitä kun neljän neliön summa voi olla 0 (mod 8) vain jos jokainen neliö on 0 tai 4 (mod 8) eli jokainen luku, josta neliö otetaan on parillinen ja näin 4:lla voidaan jakaa ja löydetään pienempi.
Itse perustelin nuo, että muotoa
2^(2k 1)
2^(4k 1)*7
2^(4k-1)*3
eivät ole neljän positiivisen neliön summia, käyttämällä Jacobin neljän neliön lausetta: https://en.wikipedia.org/wiki/Jacobi's_four-square_theorem , joka kertoo kuinka monella tavalla luvun n voi esittää neljän neliön summana (kun sallitaan myös 0 ja lisäksi lasketaan mukaan kaikki eri järjestykset ja lukujen merkit (eli negatiivisetkin sallitaan)). Tätä lukumäärää merkitään r_4(n):llä.
Tein niin että löysin tarpeeksi esityksiä, joissa on nolla mukana, jotta niistä jo tulee tuo Jacobin kertoma määrä. Tällöinhän kokonaan positiivisia ei voi enää olla.
Eka:
2^(2k 1) = (2^k)^2 (2^k)^2
tälläisia esityksiä on 4C2 * 2^2 = 24 (valitaan kaksi paikkaa neljästä, joihin 2^k pistetään ja sitten /- kummallekin. Mutta Jacobin mukaan r_4(2^(2k 1)) = 24 * (1).
Toka:
2^(4k-1) * 7
= 2^(4k-2) * (1 4 9)
= 2^(2k-1)^2 2^(2k)^2 (3^(2k-1))^2
tässä taas on 4 * 3! * 2^3 = 192 = 24*(1 7) = r_4(2^(4k-1) * 7) esitystä.
Vastaavasti kolmas tapaus, siihen tulee kolme positiivista, joista kaksi on yhtäsuuria.
Jännästi muuten ilmaantuu nuo luvut 3 ja 7, jotka kahden ja kolmen neliön tapauksissa on niitä "ongelmallisia" lukuja esityksen olemassaololle.Tuli virhe riville
= 2^(2k-1)^2 2^(2k)^2 (3^(2k-1))^2
pitäisi olla
= 2^(2k-1)^2 (2^(2k))^2 (3*2^(2k-1))^2
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
- 192548
Ulosotossa olevan tulisi saada itse päättää
Maksetaanko hänen ulosotossa olevia velkoja takaisin yksi kerrallaan vai ripotellen pikku summia sinne tänne, kuten ulos1812411Sanna Marin veti posket lommolla röökiä Ruisrockissa
Tai ainakin röökin näköistä, liekö itse käärittyä 🫢1381291Antin piti riuhtoa Sofia irti pojankIopista
Oli festivaaleilla Iiimautunut johonkin jätkään, niin Antin piti käydä irroittamassa täti ja pelastamassa poikanen. Pah2351140- 1051127
Nainen rakkaus sinua kohtaan ei kuole koskaan
Ihastunut olen moniin vuosien varrella mutta vain sinä jäit sydämeen enkä vaan osaa unohtaa. Olit silloin parasta elämäs37930Olet ollut aika törkeä minua kohtaan
Sillä tavalla ovelasti, ettei mitään "todisteita" ole mistään. Eli niin kuin, että mitään et ole tehnyt, mutta toisaalta46917Saisipa sitä palata ajassa taaksepäin
maailmaan jossa oli vielä edes joku järki tallella ja ajatus takana. Sain myös suunnatonta iloa erään henkilön näkemises32844- 132810
- 43744