Kaikkihan tuntevat Lagrangen neljän neliön lauseen: https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem , jonka mukaan jokainen luonnollinen luku voidaan kirjoittaa neljän neliön summana. Mutta siinä neliöt saavat olla myös nollia. Entä jos vaaditaan, että kaikki neljä neliötä ovat positiivisia. Mitä lukuja ei tällöin pystytä esittämään?
Olen löytänyt kolme eri "tyyppiä" lukuja joita ei pysty esittämään (en nyt paljasta mitä ne ovat, niin jää keksimisen ilo). Lisäksi joitain alkupään lukuja ei näytä pystyvän. Mutta en kylläkään osaa todistaa onko näiden kolmen tyypin lisäksi äärettömästi jotain muita lukuja vai onko nuo alkupään "poikkeamat" vain poikkeamia.
Neljän positiivisen neliön summa
3
219
Vastaukset
Joo, noinhan se meneekin. Viimenen kohta tulee tosiaan siitä kun neljän neliön summa voi olla 0 (mod 8) vain jos jokainen neliö on 0 tai 4 (mod 8) eli jokainen luku, josta neliö otetaan on parillinen ja näin 4:lla voidaan jakaa ja löydetään pienempi.
Itse perustelin nuo, että muotoa
2^(2k 1)
2^(4k 1)*7
2^(4k-1)*3
eivät ole neljän positiivisen neliön summia, käyttämällä Jacobin neljän neliön lausetta: https://en.wikipedia.org/wiki/Jacobi's_four-square_theorem , joka kertoo kuinka monella tavalla luvun n voi esittää neljän neliön summana (kun sallitaan myös 0 ja lisäksi lasketaan mukaan kaikki eri järjestykset ja lukujen merkit (eli negatiivisetkin sallitaan)). Tätä lukumäärää merkitään r_4(n):llä.
Tein niin että löysin tarpeeksi esityksiä, joissa on nolla mukana, jotta niistä jo tulee tuo Jacobin kertoma määrä. Tällöinhän kokonaan positiivisia ei voi enää olla.
Eka:
2^(2k 1) = (2^k)^2 (2^k)^2
tälläisia esityksiä on 4C2 * 2^2 = 24 (valitaan kaksi paikkaa neljästä, joihin 2^k pistetään ja sitten /- kummallekin. Mutta Jacobin mukaan r_4(2^(2k 1)) = 24 * (1).
Toka:
2^(4k-1) * 7
= 2^(4k-2) * (1 4 9)
= 2^(2k-1)^2 2^(2k)^2 (3^(2k-1))^2
tässä taas on 4 * 3! * 2^3 = 192 = 24*(1 7) = r_4(2^(4k-1) * 7) esitystä.
Vastaavasti kolmas tapaus, siihen tulee kolme positiivista, joista kaksi on yhtäsuuria.
Jännästi muuten ilmaantuu nuo luvut 3 ja 7, jotka kahden ja kolmen neliön tapauksissa on niitä "ongelmallisia" lukuja esityksen olemassaololle.minkkilaukku kirjoitti:
Joo, noinhan se meneekin. Viimenen kohta tulee tosiaan siitä kun neljän neliön summa voi olla 0 (mod 8) vain jos jokainen neliö on 0 tai 4 (mod 8) eli jokainen luku, josta neliö otetaan on parillinen ja näin 4:lla voidaan jakaa ja löydetään pienempi.
Itse perustelin nuo, että muotoa
2^(2k 1)
2^(4k 1)*7
2^(4k-1)*3
eivät ole neljän positiivisen neliön summia, käyttämällä Jacobin neljän neliön lausetta: https://en.wikipedia.org/wiki/Jacobi's_four-square_theorem , joka kertoo kuinka monella tavalla luvun n voi esittää neljän neliön summana (kun sallitaan myös 0 ja lisäksi lasketaan mukaan kaikki eri järjestykset ja lukujen merkit (eli negatiivisetkin sallitaan)). Tätä lukumäärää merkitään r_4(n):llä.
Tein niin että löysin tarpeeksi esityksiä, joissa on nolla mukana, jotta niistä jo tulee tuo Jacobin kertoma määrä. Tällöinhän kokonaan positiivisia ei voi enää olla.
Eka:
2^(2k 1) = (2^k)^2 (2^k)^2
tälläisia esityksiä on 4C2 * 2^2 = 24 (valitaan kaksi paikkaa neljästä, joihin 2^k pistetään ja sitten /- kummallekin. Mutta Jacobin mukaan r_4(2^(2k 1)) = 24 * (1).
Toka:
2^(4k-1) * 7
= 2^(4k-2) * (1 4 9)
= 2^(2k-1)^2 2^(2k)^2 (3^(2k-1))^2
tässä taas on 4 * 3! * 2^3 = 192 = 24*(1 7) = r_4(2^(4k-1) * 7) esitystä.
Vastaavasti kolmas tapaus, siihen tulee kolme positiivista, joista kaksi on yhtäsuuria.
Jännästi muuten ilmaantuu nuo luvut 3 ja 7, jotka kahden ja kolmen neliön tapauksissa on niitä "ongelmallisia" lukuja esityksen olemassaololle.Tuli virhe riville
= 2^(2k-1)^2 2^(2k)^2 (3^(2k-1))^2
pitäisi olla
= 2^(2k-1)^2 (2^(2k))^2 (3*2^(2k-1))^2
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Keskisarja loisti A-studiossa, vauhkoontunut Sofia Virta munasi itsensä
Keskisarja taas puhui 100% faktaa maahanmuuttoon liittyen. Kokoomuksen Kaumalta tuli pari hyvää puheenvuoroa, joskin muu6613470Janni Tikkanen ohjattiin miesten pukuhuoneeseen
Vai olisko sittenkin Janne Tikkanen? Jos siellä jalkojen välissä on miesten killukkeet, mieshän tämä Janni on. Ja kuuluu1002728Sä olet epävakaa
tai ainakin yrität onnistuneesti vaikuttaa siltä. Ei sun kanssa uskalla ruveta yhtään mihinkään, menis hommat ojasta all211721Rakastan ja ikävöin sinua
Ei helpota tämä ikävä millään. Pelkäsin että tämä ajanjakso tulee olemaan juuri näin vaikea. Siksi halusin ennen tätä pä771612Mieti miten paljon yritin
Löytää yhteyttä kanssasi uudelleen sen väärinymmärryksen jälkeen. Koen etten tullut puoleltasi hyvin kohdelluksi mies😔511565- 801530
Tiedän ettet tehnyt tahallasi pahaa
Asiat tapahtuivat, ristiriidat ovat meitä vahvempia. Olemmeko me niin vahvoja, että selviämme tästäkin vielä? Aika paljo1101510Teräväkielinen Virta jauhotti totaalisesti sössöttävän Keskisarjan
Harvoin on noin suvereenia jauhotusta A-studiossa nähty. Ja minä äänestän demareita, joita ei oltu paikalle edes kutsut3641475- 281359
Haluatko tietää totuuden?
Olen kyllästynyt sinuun. Et herätä enää mielenkiintoa. Samat jutut x 100. Kuten narskuilla aina. Samalla tunnen myötätun901253