Neljän positiivisen neliön summa

Kaikkihan tuntevat Lagrangen neljän neliön lauseen: https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem , jonka mukaan jokainen luonnollinen luku voidaan kirjoittaa neljän neliön summana. Mutta siinä neliöt saavat olla myös nollia. Entä jos vaaditaan, että kaikki neljä neliötä ovat positiivisia. Mitä lukuja ei tällöin pystytä esittämään?

Olen löytänyt kolme eri "tyyppiä" lukuja joita ei pysty esittämään (en nyt paljasta mitä ne ovat, niin jää keksimisen ilo). Lisäksi joitain alkupään lukuja ei näytä pystyvän. Mutta en kylläkään osaa todistaa onko näiden kolmen tyypin lisäksi äärettömästi jotain muita lukuja vai onko nuo alkupään "poikkeamat" vain poikkeamia.

3

179

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
      • Joo, noinhan se meneekin. Viimenen kohta tulee tosiaan siitä kun neljän neliön summa voi olla 0 (mod 8) vain jos jokainen neliö on 0 tai 4 (mod 8) eli jokainen luku, josta neliö otetaan on parillinen ja näin 4:lla voidaan jakaa ja löydetään pienempi.

        Itse perustelin nuo, että muotoa
        2^(2k 1)
        2^(4k 1)*7
        2^(4k-1)*3
        eivät ole neljän positiivisen neliön summia, käyttämällä Jacobin neljän neliön lausetta: https://en.wikipedia.org/wiki/Jacobi's_four-square_theorem , joka kertoo kuinka monella tavalla luvun n voi esittää neljän neliön summana (kun sallitaan myös 0 ja lisäksi lasketaan mukaan kaikki eri järjestykset ja lukujen merkit (eli negatiivisetkin sallitaan)). Tätä lukumäärää merkitään r_4(n):llä.

        Tein niin että löysin tarpeeksi esityksiä, joissa on nolla mukana, jotta niistä jo tulee tuo Jacobin kertoma määrä. Tällöinhän kokonaan positiivisia ei voi enää olla.

        Eka:
        2^(2k 1) = (2^k)^2 (2^k)^2
        tälläisia esityksiä on 4C2 * 2^2 = 24 (valitaan kaksi paikkaa neljästä, joihin 2^k pistetään ja sitten /- kummallekin. Mutta Jacobin mukaan r_4(2^(2k 1)) = 24 * (1).

        Toka:
        2^(4k-1) * 7
        = 2^(4k-2) * (1 4 9)
        = 2^(2k-1)^2 2^(2k)^2 (3^(2k-1))^2

        tässä taas on 4 * 3! * 2^3 = 192 = 24*(1 7) = r_4(2^(4k-1) * 7) esitystä.

        Vastaavasti kolmas tapaus, siihen tulee kolme positiivista, joista kaksi on yhtäsuuria.

        Jännästi muuten ilmaantuu nuo luvut 3 ja 7, jotka kahden ja kolmen neliön tapauksissa on niitä "ongelmallisia" lukuja esityksen olemassaololle.


      • minkkilaukku kirjoitti:

        Joo, noinhan se meneekin. Viimenen kohta tulee tosiaan siitä kun neljän neliön summa voi olla 0 (mod 8) vain jos jokainen neliö on 0 tai 4 (mod 8) eli jokainen luku, josta neliö otetaan on parillinen ja näin 4:lla voidaan jakaa ja löydetään pienempi.

        Itse perustelin nuo, että muotoa
        2^(2k 1)
        2^(4k 1)*7
        2^(4k-1)*3
        eivät ole neljän positiivisen neliön summia, käyttämällä Jacobin neljän neliön lausetta: https://en.wikipedia.org/wiki/Jacobi's_four-square_theorem , joka kertoo kuinka monella tavalla luvun n voi esittää neljän neliön summana (kun sallitaan myös 0 ja lisäksi lasketaan mukaan kaikki eri järjestykset ja lukujen merkit (eli negatiivisetkin sallitaan)). Tätä lukumäärää merkitään r_4(n):llä.

        Tein niin että löysin tarpeeksi esityksiä, joissa on nolla mukana, jotta niistä jo tulee tuo Jacobin kertoma määrä. Tällöinhän kokonaan positiivisia ei voi enää olla.

        Eka:
        2^(2k 1) = (2^k)^2 (2^k)^2
        tälläisia esityksiä on 4C2 * 2^2 = 24 (valitaan kaksi paikkaa neljästä, joihin 2^k pistetään ja sitten /- kummallekin. Mutta Jacobin mukaan r_4(2^(2k 1)) = 24 * (1).

        Toka:
        2^(4k-1) * 7
        = 2^(4k-2) * (1 4 9)
        = 2^(2k-1)^2 2^(2k)^2 (3^(2k-1))^2

        tässä taas on 4 * 3! * 2^3 = 192 = 24*(1 7) = r_4(2^(4k-1) * 7) esitystä.

        Vastaavasti kolmas tapaus, siihen tulee kolme positiivista, joista kaksi on yhtäsuuria.

        Jännästi muuten ilmaantuu nuo luvut 3 ja 7, jotka kahden ja kolmen neliön tapauksissa on niitä "ongelmallisia" lukuja esityksen olemassaololle.

        Tuli virhe riville
        = 2^(2k-1)^2 2^(2k)^2 (3^(2k-1))^2
        pitäisi olla
        = 2^(2k-1)^2 (2^(2k))^2 (3*2^(2k-1))^2


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Työsuhdepyörän veroetu poistuu

      Hallituksen veropoliittisen Riihen uutisia: Mitä ilmeisimmin 1.1.2026 alkaen työsuhdepyörän kuukausiveloitus maksetaan
      Pyöräily
      237
      7137
    2. Pakko tulla tänne

      jälleen kertomaan kuinka mahtava ja ihmeellinen sekä parhaalla tavalla hämmentävä nainen olet. En ikinä tule kyllästymää
      Ikävä
      45
      1335
    3. Fuengirola.fi: Danny avautuu yllättäen ex-rakas Erika Vikmanista: "Sanoisin, että hän on..."

      Danny matkasi Aurinkorannikolle Helmi Loukasmäen kanssa. Musiikkineuvoksella on silmää naiskauneudelle ja hänen ex-raka
      Kotimaiset julkkisjuorut
      29
      1188
    4. Hävettää muuttaa Haapavedelle.

      Joudun töiden vuoksi muuttamaan Haapavedelle, kun työpaikkani siirtyi sinne. Nyt olen joutunut pakkaamaan kamoja toisaal
      Haapavesi
      50
      925
    5. Yksi kysymys

      Yksi kysymys, minkä kysyisit kaivatultasi. Mikä se olisi?
      Ikävä
      75
      921
    6. Katseestasi näin

      Silmissäsi syttyi hiljainen tuli, Se ei polttanut, vaan muistutti, että olin ennenkin elänyt sinun rinnallasi, jossain a
      Ikävä
      62
      887
    7. Työhuonevähennys poistuu etätyöntekijöiltä

      Hyvä. Vituttaa muutenkin etätyöntekijät. Ei se tietokoneen naputtelu mitään työtä ole.
      Maailman menoa
      96
      886
    8. Toinen kuva mikä susta on jäänyt on

      tietynlainen saamattomuus ja laiskuus. Sellaineen narsistinen laiskanpuoleisuus. Palvelkaa ja tehkää.
      Ikävä
      38
      831
    9. Tietenkin täällä

      Kunnan kyseenalainen maine kasvaa taas , joku huijannut monen vuoden ajan peltotukia vilpillisin keinoin.
      Suomussalmi
      14
      786
    10. Jäähalli myynnissä!

      Pitihän se arvata kun tuonne se piti rakentaa väkisin.
      Äänekoski
      43
      773
    Aihe