Neljän positiivisen neliön summa

Kaikkihan tuntevat Lagrangen neljän neliön lauseen: https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem , jonka mukaan jokainen luonnollinen luku voidaan kirjoittaa neljän neliön summana. Mutta siinä neliöt saavat olla myös nollia. Entä jos vaaditaan, että kaikki neljä neliötä ovat positiivisia. Mitä lukuja ei tällöin pystytä esittämään?

Olen löytänyt kolme eri "tyyppiä" lukuja joita ei pysty esittämään (en nyt paljasta mitä ne ovat, niin jää keksimisen ilo). Lisäksi joitain alkupään lukuja ei näytä pystyvän. Mutta en kylläkään osaa todistaa onko näiden kolmen tyypin lisäksi äärettömästi jotain muita lukuja vai onko nuo alkupään "poikkeamat" vain poikkeamia.

3

200

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
      • Joo, noinhan se meneekin. Viimenen kohta tulee tosiaan siitä kun neljän neliön summa voi olla 0 (mod 8) vain jos jokainen neliö on 0 tai 4 (mod 8) eli jokainen luku, josta neliö otetaan on parillinen ja näin 4:lla voidaan jakaa ja löydetään pienempi.

        Itse perustelin nuo, että muotoa
        2^(2k 1)
        2^(4k 1)*7
        2^(4k-1)*3
        eivät ole neljän positiivisen neliön summia, käyttämällä Jacobin neljän neliön lausetta: https://en.wikipedia.org/wiki/Jacobi's_four-square_theorem , joka kertoo kuinka monella tavalla luvun n voi esittää neljän neliön summana (kun sallitaan myös 0 ja lisäksi lasketaan mukaan kaikki eri järjestykset ja lukujen merkit (eli negatiivisetkin sallitaan)). Tätä lukumäärää merkitään r_4(n):llä.

        Tein niin että löysin tarpeeksi esityksiä, joissa on nolla mukana, jotta niistä jo tulee tuo Jacobin kertoma määrä. Tällöinhän kokonaan positiivisia ei voi enää olla.

        Eka:
        2^(2k 1) = (2^k)^2 (2^k)^2
        tälläisia esityksiä on 4C2 * 2^2 = 24 (valitaan kaksi paikkaa neljästä, joihin 2^k pistetään ja sitten /- kummallekin. Mutta Jacobin mukaan r_4(2^(2k 1)) = 24 * (1).

        Toka:
        2^(4k-1) * 7
        = 2^(4k-2) * (1 4 9)
        = 2^(2k-1)^2 2^(2k)^2 (3^(2k-1))^2

        tässä taas on 4 * 3! * 2^3 = 192 = 24*(1 7) = r_4(2^(4k-1) * 7) esitystä.

        Vastaavasti kolmas tapaus, siihen tulee kolme positiivista, joista kaksi on yhtäsuuria.

        Jännästi muuten ilmaantuu nuo luvut 3 ja 7, jotka kahden ja kolmen neliön tapauksissa on niitä "ongelmallisia" lukuja esityksen olemassaololle.


      • minkkilaukku kirjoitti:

        Joo, noinhan se meneekin. Viimenen kohta tulee tosiaan siitä kun neljän neliön summa voi olla 0 (mod 8) vain jos jokainen neliö on 0 tai 4 (mod 8) eli jokainen luku, josta neliö otetaan on parillinen ja näin 4:lla voidaan jakaa ja löydetään pienempi.

        Itse perustelin nuo, että muotoa
        2^(2k 1)
        2^(4k 1)*7
        2^(4k-1)*3
        eivät ole neljän positiivisen neliön summia, käyttämällä Jacobin neljän neliön lausetta: https://en.wikipedia.org/wiki/Jacobi's_four-square_theorem , joka kertoo kuinka monella tavalla luvun n voi esittää neljän neliön summana (kun sallitaan myös 0 ja lisäksi lasketaan mukaan kaikki eri järjestykset ja lukujen merkit (eli negatiivisetkin sallitaan)). Tätä lukumäärää merkitään r_4(n):llä.

        Tein niin että löysin tarpeeksi esityksiä, joissa on nolla mukana, jotta niistä jo tulee tuo Jacobin kertoma määrä. Tällöinhän kokonaan positiivisia ei voi enää olla.

        Eka:
        2^(2k 1) = (2^k)^2 (2^k)^2
        tälläisia esityksiä on 4C2 * 2^2 = 24 (valitaan kaksi paikkaa neljästä, joihin 2^k pistetään ja sitten /- kummallekin. Mutta Jacobin mukaan r_4(2^(2k 1)) = 24 * (1).

        Toka:
        2^(4k-1) * 7
        = 2^(4k-2) * (1 4 9)
        = 2^(2k-1)^2 2^(2k)^2 (3^(2k-1))^2

        tässä taas on 4 * 3! * 2^3 = 192 = 24*(1 7) = r_4(2^(4k-1) * 7) esitystä.

        Vastaavasti kolmas tapaus, siihen tulee kolme positiivista, joista kaksi on yhtäsuuria.

        Jännästi muuten ilmaantuu nuo luvut 3 ja 7, jotka kahden ja kolmen neliön tapauksissa on niitä "ongelmallisia" lukuja esityksen olemassaololle.

        Tuli virhe riville
        = 2^(2k-1)^2 2^(2k)^2 (3^(2k-1))^2
        pitäisi olla
        = 2^(2k-1)^2 (2^(2k))^2 (3*2^(2k-1))^2


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Rakastan sinua

      Kohta sanon tämän livenä, älä pelästy.
      Ikävä
      106
      1582
    2. Miksköhän mä oon tuolla

      Joskus antanut ymmärtää että olisin sun rinnoista pelkästään kiinnostunut 😂😁🤭 ja sä säikähdit että koskisin ilman lup
      Ikävä
      8
      1051
    3. Tiedätkö miten pahalta tuntui

      Kun vetäydyit? Ei kuukausiksi vaan vuosiksi.
      Ikävä
      61
      940
    4. Epäiletkö että kaivattusi

      On tai on ollut ihastunut sinuun?
      Ikävä
      64
      768
    5. Onko Lahdessa juhannuskokkoa?

      Entä vähän kauempana?
      Lahti
      1
      750
    6. Heti kun luomisen motiivi tuli esiin - se haisi RAAMATULLISELTA TARINALTA ISOISÄSTÄ, JOLLA ON PARTA

      Pinnalliset käsitykset korkeammasta Todellisuudesta Heti kun luomisen motiivi tuli esiin - se haisi RAAMATULLISELTA TAR
      Hindulaisuus
      329
      732
    7. J miehestä oikeaa

      Nimeä ei voi tänne julkaista mutta kannattaa olla varuillaan jos ”aistit” auki t nainen
      Ikävä
      69
      703
    8. Vanhemmalle naiselle

      Juhannussauna on lämpiämässä. 🌿🥵💦
      Ikävä
      45
      680
    9. Kysyit firman bileissä..

      .. että tulisinko luoksesi yöksi... Oliko se vain heitto. Mitäs jos olisin tullut? Naiselta
      Ikävä
      8
      629
    10. Miksi Suomessa uskotaan Usan kanssa tehtyihin sopimuksiin

      Kaikki viestit Usan suunnasta on ollut jo pitkän aikaa sen kaltainen että muiden liittolaismaidenkin sotilaallista autta
      Maailman menoa
      58
      627
    Aihe