Kaikkihan tuntevat Lagrangen neljän neliön lauseen: https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem , jonka mukaan jokainen luonnollinen luku voidaan kirjoittaa neljän neliön summana. Mutta siinä neliöt saavat olla myös nollia. Entä jos vaaditaan, että kaikki neljä neliötä ovat positiivisia. Mitä lukuja ei tällöin pystytä esittämään?
Olen löytänyt kolme eri "tyyppiä" lukuja joita ei pysty esittämään (en nyt paljasta mitä ne ovat, niin jää keksimisen ilo). Lisäksi joitain alkupään lukuja ei näytä pystyvän. Mutta en kylläkään osaa todistaa onko näiden kolmen tyypin lisäksi äärettömästi jotain muita lukuja vai onko nuo alkupään "poikkeamat" vain poikkeamia.
Neljän positiivisen neliön summa
3
179
Vastaukset
Joo, noinhan se meneekin. Viimenen kohta tulee tosiaan siitä kun neljän neliön summa voi olla 0 (mod 8) vain jos jokainen neliö on 0 tai 4 (mod 8) eli jokainen luku, josta neliö otetaan on parillinen ja näin 4:lla voidaan jakaa ja löydetään pienempi.
Itse perustelin nuo, että muotoa
2^(2k 1)
2^(4k 1)*7
2^(4k-1)*3
eivät ole neljän positiivisen neliön summia, käyttämällä Jacobin neljän neliön lausetta: https://en.wikipedia.org/wiki/Jacobi's_four-square_theorem , joka kertoo kuinka monella tavalla luvun n voi esittää neljän neliön summana (kun sallitaan myös 0 ja lisäksi lasketaan mukaan kaikki eri järjestykset ja lukujen merkit (eli negatiivisetkin sallitaan)). Tätä lukumäärää merkitään r_4(n):llä.
Tein niin että löysin tarpeeksi esityksiä, joissa on nolla mukana, jotta niistä jo tulee tuo Jacobin kertoma määrä. Tällöinhän kokonaan positiivisia ei voi enää olla.
Eka:
2^(2k 1) = (2^k)^2 (2^k)^2
tälläisia esityksiä on 4C2 * 2^2 = 24 (valitaan kaksi paikkaa neljästä, joihin 2^k pistetään ja sitten /- kummallekin. Mutta Jacobin mukaan r_4(2^(2k 1)) = 24 * (1).
Toka:
2^(4k-1) * 7
= 2^(4k-2) * (1 4 9)
= 2^(2k-1)^2 2^(2k)^2 (3^(2k-1))^2
tässä taas on 4 * 3! * 2^3 = 192 = 24*(1 7) = r_4(2^(4k-1) * 7) esitystä.
Vastaavasti kolmas tapaus, siihen tulee kolme positiivista, joista kaksi on yhtäsuuria.
Jännästi muuten ilmaantuu nuo luvut 3 ja 7, jotka kahden ja kolmen neliön tapauksissa on niitä "ongelmallisia" lukuja esityksen olemassaololle.minkkilaukku kirjoitti:
Joo, noinhan se meneekin. Viimenen kohta tulee tosiaan siitä kun neljän neliön summa voi olla 0 (mod 8) vain jos jokainen neliö on 0 tai 4 (mod 8) eli jokainen luku, josta neliö otetaan on parillinen ja näin 4:lla voidaan jakaa ja löydetään pienempi.
Itse perustelin nuo, että muotoa
2^(2k 1)
2^(4k 1)*7
2^(4k-1)*3
eivät ole neljän positiivisen neliön summia, käyttämällä Jacobin neljän neliön lausetta: https://en.wikipedia.org/wiki/Jacobi's_four-square_theorem , joka kertoo kuinka monella tavalla luvun n voi esittää neljän neliön summana (kun sallitaan myös 0 ja lisäksi lasketaan mukaan kaikki eri järjestykset ja lukujen merkit (eli negatiivisetkin sallitaan)). Tätä lukumäärää merkitään r_4(n):llä.
Tein niin että löysin tarpeeksi esityksiä, joissa on nolla mukana, jotta niistä jo tulee tuo Jacobin kertoma määrä. Tällöinhän kokonaan positiivisia ei voi enää olla.
Eka:
2^(2k 1) = (2^k)^2 (2^k)^2
tälläisia esityksiä on 4C2 * 2^2 = 24 (valitaan kaksi paikkaa neljästä, joihin 2^k pistetään ja sitten /- kummallekin. Mutta Jacobin mukaan r_4(2^(2k 1)) = 24 * (1).
Toka:
2^(4k-1) * 7
= 2^(4k-2) * (1 4 9)
= 2^(2k-1)^2 2^(2k)^2 (3^(2k-1))^2
tässä taas on 4 * 3! * 2^3 = 192 = 24*(1 7) = r_4(2^(4k-1) * 7) esitystä.
Vastaavasti kolmas tapaus, siihen tulee kolme positiivista, joista kaksi on yhtäsuuria.
Jännästi muuten ilmaantuu nuo luvut 3 ja 7, jotka kahden ja kolmen neliön tapauksissa on niitä "ongelmallisia" lukuja esityksen olemassaololle.Tuli virhe riville
= 2^(2k-1)^2 2^(2k)^2 (3^(2k-1))^2
pitäisi olla
= 2^(2k-1)^2 (2^(2k))^2 (3*2^(2k-1))^2
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Työsuhdepyörän veroetu poistuu
Hallituksen veropoliittisen Riihen uutisia: Mitä ilmeisimmin 1.1.2026 alkaen työsuhdepyörän kuukausiveloitus maksetaan2377137Pakko tulla tänne
jälleen kertomaan kuinka mahtava ja ihmeellinen sekä parhaalla tavalla hämmentävä nainen olet. En ikinä tule kyllästymää451335Fuengirola.fi: Danny avautuu yllättäen ex-rakas Erika Vikmanista: "Sanoisin, että hän on..."
Danny matkasi Aurinkorannikolle Helmi Loukasmäen kanssa. Musiikkineuvoksella on silmää naiskauneudelle ja hänen ex-raka291188Hävettää muuttaa Haapavedelle.
Joudun töiden vuoksi muuttamaan Haapavedelle, kun työpaikkani siirtyi sinne. Nyt olen joutunut pakkaamaan kamoja toisaal50925- 75921
Katseestasi näin
Silmissäsi syttyi hiljainen tuli, Se ei polttanut, vaan muistutti, että olin ennenkin elänyt sinun rinnallasi, jossain a62887Työhuonevähennys poistuu etätyöntekijöiltä
Hyvä. Vituttaa muutenkin etätyöntekijät. Ei se tietokoneen naputtelu mitään työtä ole.96886Toinen kuva mikä susta on jäänyt on
tietynlainen saamattomuus ja laiskuus. Sellaineen narsistinen laiskanpuoleisuus. Palvelkaa ja tehkää.38831Tietenkin täällä
Kunnan kyseenalainen maine kasvaa taas , joku huijannut monen vuoden ajan peltotukia vilpillisin keinoin.14786- 43773