Tasointegraalit

Anonyymi

16

230

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      1.V = Int (0 <= x <= 2) (- x <= y <= x) (2 x - 4y) dx dy = Int(0 <= x <= 2) Sij(-x,x)( 2y xy - 2 y^2) dx = Int(0 <= x <= 2) ( 2x x^2 - 2 x^2 - (- 2x - x^2 - 2 x^2))dx =
      Int(0 <= x <= 2) ( 2 x^2 4x) dx = Sij(0,2) (2/3 x^3 2 x^2) = 16/3 8 = 40/3

      2. En tiedä mitä tehtäväsi tarkoittaa. Mitä siinä pitäisi laskea?

      • Anonyymi

        Yritin kanssa tuota ykköstehtävää ratkaista, mutta kun tuo z=2 x-4y menee alle z=0 tason, eli on (2,2) kulmassa -4, niin siihen se tyssäs. Joko pohja ei ole z=0 tasolla , tai pohjaa rajoittaa vielä suora , joka saadaan ehdosta 2 x-4y > 0 => y < x/4 ½. , ja sitten lasku menee osissa integroitavaksi, ja en usko, että niin pitäisi.
        Toinen tehtävä: https://www.wolframalpha.com/input/?i=integrate ½(4-x^2)^2 , from -2 to 2. Varmaan täytyy käyttää copy pastea


      • Anonyymi
        Anonyymi kirjoitti:

        Yritin kanssa tuota ykköstehtävää ratkaista, mutta kun tuo z=2 x-4y menee alle z=0 tason, eli on (2,2) kulmassa -4, niin siihen se tyssäs. Joko pohja ei ole z=0 tasolla , tai pohjaa rajoittaa vielä suora , joka saadaan ehdosta 2 x-4y > 0 => y < x/4 ½. , ja sitten lasku menee osissa integroitavaksi, ja en usko, että niin pitäisi.
        Toinen tehtävä: https://www.wolframalpha.com/input/?i=integrate ½(4-x^2)^2 , from -2 to 2. Varmaan täytyy käyttää copy pastea

        Oletan siis , että Iy=staattinen momentti =kaksoisintegraali: y *dydx, ja y:n rajat 0...(4-x^2), ja x:n rajat -2.....2


      • Anonyymi
        Anonyymi kirjoitti:

        Oletan siis , että Iy=staattinen momentti =kaksoisintegraali: y *dydx, ja y:n rajat 0...(4-x^2), ja x:n rajat -2.....2

        Jos se on hitausmomentti, niin y^2*dydx


      • Anonyymi
        Anonyymi kirjoitti:

        Jos se on hitausmomentti, niin y^2*dydx

        Eiköhän tuo nyt kuitenkin ole niin , että, jos hitausmomentti y-akselin mukaan lasketaan, niin se on doubleintegral x^2*dx*dy, rajat on samat.


      • Anonyymi
        Anonyymi kirjoitti:

        Jos se on hitausmomentti, niin y^2*dydx

        Juuri hitausmomenttia tuossa kakkos tehtävässä lasketaan.


      • Anonyymi
        Anonyymi kirjoitti:

        Juuri hitausmomenttia tuossa kakkos tehtävässä lasketaan.

        Siinä taisikin olla integraaliongelma, mutta ei näitä yleensä lasketa , vaan otetaan se valmis integraali jostakin:
        https://aijaa.com/Jd5zUb


      • Anonyymi
        Anonyymi kirjoitti:

        Siinä taisikin olla integraaliongelma, mutta ei näitä yleensä lasketa , vaan otetaan se valmis integraali jostakin:
        https://aijaa.com/Jd5zUb

        Ottamatta muuten kantaa tehtävään lasken tuon "aijaa-integraalin".

        I = Int(-2,2) (x^2 sqrt(4-x^2)) dx
        x = 2 sin(t), dx = 2 cos(t) dt ja (-2,2) -> (- pii/2,pii/2)
        I= 16 Int(- pii/2,pii/2) (sin^2(t) cos^2(t)) dt = 4 Int(-pii/2,pii/2) sin^2(2t) dt
        t = 1/2 u, dt = 1/2 du ja (-pii/2,pii/2) -> (- pii, pii).
        I = 2 Int(-pii,pii) sin^2(u) du = - 2 Int(-pii,pii) (sin(u) d(cos(u)) =
        0 2 Int cos^2(u) du
        Siis I = Int(-pii,pii) (sin^2(u) cos^2(u)) du = 2 pii


      • Anonyymi
        Anonyymi kirjoitti:

        Ottamatta muuten kantaa tehtävään lasken tuon "aijaa-integraalin".

        I = Int(-2,2) (x^2 sqrt(4-x^2)) dx
        x = 2 sin(t), dx = 2 cos(t) dt ja (-2,2) -> (- pii/2,pii/2)
        I= 16 Int(- pii/2,pii/2) (sin^2(t) cos^2(t)) dt = 4 Int(-pii/2,pii/2) sin^2(2t) dt
        t = 1/2 u, dt = 1/2 du ja (-pii/2,pii/2) -> (- pii, pii).
        I = 2 Int(-pii,pii) sin^2(u) du = - 2 Int(-pii,pii) (sin(u) d(cos(u)) =
        0 2 Int cos^2(u) du
        Siis I = Int(-pii,pii) (sin^2(u) cos^2(u)) du = 2 pii

        Jäi tuosta toiseksi viimeiseltä riviltä integroimisrajat pois, p.o.
        0 2 Int(-pii,pii) cos^2(u) du


    • Anonyymi
      • Anonyymi

        Kerron heti kärkeen, etten ole ikinä aikaisemmin näitä taso- enkä viivaintegraaleja pöyhinyt, ja luulinkin pärjääväni elämäni ilman niitä.
        Nyt kuitenkin katselin niitä yhdestä kirjasta, ja tommosia ne niistä vetelee.
        Ne merkkaa aina noilla nuolilla tason yli kulkusuunnat, en sitten tiedä mikä merkitys silläkin on...https://aijaa.com/gE1ueP


      • Anonyymi

        1. Kun 2 <= x <= 4 niin x^2 > sqrt(x) joten integroimisalueen määritelmässäsi tuo ehto
        x^2 <= y <= sqrt(x) on mahdoton.

        2. Int(0 <= x <= 4) (1 <= y <=5) 2 x^2 dx dy = Int(0 <= x <= 4) 2x^2 * 4 dx = Sij(0,4) ( 8/3 x^3) =
        512/3


      • Anonyymi
        Anonyymi kirjoitti:

        1. Kun 2 <= x <= 4 niin x^2 > sqrt(x) joten integroimisalueen määritelmässäsi tuo ehto
        x^2 <= y <= sqrt(x) on mahdoton.

        2. Int(0 <= x <= 4) (1 <= y <=5) 2 x^2 dx dy = Int(0 <= x <= 4) 2x^2 * 4 dx = Sij(0,4) ( 8/3 x^3) =
        512/3

        ykkös tehtävän sain tehtyä jotenkin, mutta tarvitsee olla sijoitukset ja kunnollisit väli vaiheet niin en saa sitä itse tehtyä
        https://gyazo.com/475ecf5e9a7d84c9ca0692fe4da4d25a
        tuossa esimerkki, tosin tuossa linkin esimerkissä eri rajat 1,2

        avaisitko vähän tuota kakkos tehtävää kuinka ne kaikki välivaiheet kulkee


      • Anonyymi
        Anonyymi kirjoitti:

        ykkös tehtävän sain tehtyä jotenkin, mutta tarvitsee olla sijoitukset ja kunnollisit väli vaiheet niin en saa sitä itse tehtyä
        https://gyazo.com/475ecf5e9a7d84c9ca0692fe4da4d25a
        tuossa esimerkki, tosin tuossa linkin esimerkissä eri rajat 1,2

        avaisitko vähän tuota kakkos tehtävää kuinka ne kaikki välivaiheet kulkee

        Lisää "välivaiheita":
        Int(0,4) (1,5) (2x^2) dx dy = Int(0,4) Sij(1,5) (2x^2 y) dx = Int(0,4) (2x^2(5 - 1)) dx =
        Int(0,4) (8 x^2 ) dx = Sij(0,4) 8/3 x^3 = 8*64/3 = 512/3


    • Anonyymi

      Kyllähän integroinnin x^2 -> sqrt(x) voi tietenkin suorittaa ja se on sama kuin miinus integraali sqrt(x) -> x^2. Mutta sinä kirjoitit tuon ehdon siten että ehto on mahdoton välillä 2 <= x <= 4.

      Int(2,4) (x^2, sqrt(x)) (xy) dx dy = Int(2,4) Sij(x^2, sqrt(x)) ( 1/2 x y^2) dx =
      1/2 Int(2,4) x(x - x^4) dx = 1/2 Int(2,4) (x^2 - x^5) dx = 1/2 Sij(2,4) (x^3/3 - x^6/6) =
      1/2 ( 8/3 - 64/6 - 64/3 4096/6) = 1/12 (16 - 64 - 128 4096) = 3920/12 = 980/3
      1/2 ( 64/3 - 4096/6 - 8/3 64/6) = 1/12 (128 - 4096 - 16 64) = - 3920/12 = - 980/3.

      • Anonyymi

        Tuli kirjoitusvirhe: tuo neljäs rivi joka päättyy ..= 980/3 minun piti virheellisenä poistaa mutta jäi tekemättä. Älä lue sitä riviä.


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Poliisi: Kymmenhenkinen pohjalaisperhe ollut vuoden kateissa kansainvälinen etsintäkuulutus Poliis

      Poliisi: Kymmenhenkinen pohjalaisperhe ollut vuoden kateissa – kansainvälinen etsintäkuulutus Poliisi pyytää yleisön apu
      Maailman menoa
      467
      4054
    2. Tässä totuus jälleensyntymisestä - voit yllättyä

      Jumalasta syntyminen Raamatussa ei tässä Joh. 3:3. ole alkukielen mukaan ollenkaan sanaa uudestisyntyminen, vaan pelkä
      Jälleensyntyminen
      318
      1692
    3. Mitään järkeä?

      Että ollaan erillään? Kummankin pää on kovilla.
      Ikävä
      116
      1526
    4. En kadu sitä, että kohtasin hänet

      mutta kadun sitä, että aloin kirjoittamaan tänne palstalle. Jollain tasolla se saa vain asiat enemmän solmuun ja tekee n
      Ikävä
      89
      1474
    5. Noniin rakas

      Annetaanko pikkuhiljaa jo olla, niin ehkä säilyy vienot hymyt kohdatessa. En edelleenkään halua sulle tai kenellekään mi
      Ikävä
      99
      1408
    6. Oisko mitenkään mahdollisesti ihan pikkuisen ikävä..

      ...edes ihan pikkuisen pikkuisen ikävä sulla mua??.. Että miettisit vaikka vähän missähän se nyt on ja oiskohan hauska n
      Ikävä
      60
      1375
    7. Lapuan sanomissa käy rytinä

      Pistivät sitten päätoimittajan pihalle
      Lapua
      52
      1316
    8. Helena Koivu : Ja kohta mennään taas

      Kohta kohtalon päivä lähestyy kuinka käy Helena Koivulle ? Kenen puolella olet? Jos vastauksesi on Helenan niin voisi
      Kotimaiset julkkisjuorut
      98
      1235
    9. Oot ihana

      Toivottavasti nähdään sattumalta jonain kesäpäivänä♥️🥺🫂
      Ikävä
      44
      1079
    10. Au pair -työ Thaimaassa herättää kiivasta keskustelua somessa: "4cm torakoita, huumeita, tauteja..."

      Au pairit -sarjan uusi kausi herättää keskustelua Suomi24 Keskustelupalvelussa. Mielipiteitä ladataan puolesta ja vastaa
      Tv-sarjat
      34
      1078
    Aihe