Tasointegraalit

Anonyymi

16

222

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      1.V = Int (0 <= x <= 2) (- x <= y <= x) (2 x - 4y) dx dy = Int(0 <= x <= 2) Sij(-x,x)( 2y xy - 2 y^2) dx = Int(0 <= x <= 2) ( 2x x^2 - 2 x^2 - (- 2x - x^2 - 2 x^2))dx =
      Int(0 <= x <= 2) ( 2 x^2 4x) dx = Sij(0,2) (2/3 x^3 2 x^2) = 16/3 8 = 40/3

      2. En tiedä mitä tehtäväsi tarkoittaa. Mitä siinä pitäisi laskea?

      • Anonyymi

        Yritin kanssa tuota ykköstehtävää ratkaista, mutta kun tuo z=2 x-4y menee alle z=0 tason, eli on (2,2) kulmassa -4, niin siihen se tyssäs. Joko pohja ei ole z=0 tasolla , tai pohjaa rajoittaa vielä suora , joka saadaan ehdosta 2 x-4y > 0 => y < x/4 ½. , ja sitten lasku menee osissa integroitavaksi, ja en usko, että niin pitäisi.
        Toinen tehtävä: https://www.wolframalpha.com/input/?i=integrate ½(4-x^2)^2 , from -2 to 2. Varmaan täytyy käyttää copy pastea


      • Anonyymi
        Anonyymi kirjoitti:

        Yritin kanssa tuota ykköstehtävää ratkaista, mutta kun tuo z=2 x-4y menee alle z=0 tason, eli on (2,2) kulmassa -4, niin siihen se tyssäs. Joko pohja ei ole z=0 tasolla , tai pohjaa rajoittaa vielä suora , joka saadaan ehdosta 2 x-4y > 0 => y < x/4 ½. , ja sitten lasku menee osissa integroitavaksi, ja en usko, että niin pitäisi.
        Toinen tehtävä: https://www.wolframalpha.com/input/?i=integrate ½(4-x^2)^2 , from -2 to 2. Varmaan täytyy käyttää copy pastea

        Oletan siis , että Iy=staattinen momentti =kaksoisintegraali: y *dydx, ja y:n rajat 0...(4-x^2), ja x:n rajat -2.....2


      • Anonyymi
        Anonyymi kirjoitti:

        Oletan siis , että Iy=staattinen momentti =kaksoisintegraali: y *dydx, ja y:n rajat 0...(4-x^2), ja x:n rajat -2.....2

        Jos se on hitausmomentti, niin y^2*dydx


      • Anonyymi
        Anonyymi kirjoitti:

        Jos se on hitausmomentti, niin y^2*dydx

        Eiköhän tuo nyt kuitenkin ole niin , että, jos hitausmomentti y-akselin mukaan lasketaan, niin se on doubleintegral x^2*dx*dy, rajat on samat.


      • Anonyymi
        Anonyymi kirjoitti:

        Jos se on hitausmomentti, niin y^2*dydx

        Juuri hitausmomenttia tuossa kakkos tehtävässä lasketaan.


      • Anonyymi
        Anonyymi kirjoitti:

        Juuri hitausmomenttia tuossa kakkos tehtävässä lasketaan.

        Siinä taisikin olla integraaliongelma, mutta ei näitä yleensä lasketa , vaan otetaan se valmis integraali jostakin:
        https://aijaa.com/Jd5zUb


      • Anonyymi
        Anonyymi kirjoitti:

        Siinä taisikin olla integraaliongelma, mutta ei näitä yleensä lasketa , vaan otetaan se valmis integraali jostakin:
        https://aijaa.com/Jd5zUb

        Ottamatta muuten kantaa tehtävään lasken tuon "aijaa-integraalin".

        I = Int(-2,2) (x^2 sqrt(4-x^2)) dx
        x = 2 sin(t), dx = 2 cos(t) dt ja (-2,2) -> (- pii/2,pii/2)
        I= 16 Int(- pii/2,pii/2) (sin^2(t) cos^2(t)) dt = 4 Int(-pii/2,pii/2) sin^2(2t) dt
        t = 1/2 u, dt = 1/2 du ja (-pii/2,pii/2) -> (- pii, pii).
        I = 2 Int(-pii,pii) sin^2(u) du = - 2 Int(-pii,pii) (sin(u) d(cos(u)) =
        0 2 Int cos^2(u) du
        Siis I = Int(-pii,pii) (sin^2(u) cos^2(u)) du = 2 pii


      • Anonyymi
        Anonyymi kirjoitti:

        Ottamatta muuten kantaa tehtävään lasken tuon "aijaa-integraalin".

        I = Int(-2,2) (x^2 sqrt(4-x^2)) dx
        x = 2 sin(t), dx = 2 cos(t) dt ja (-2,2) -> (- pii/2,pii/2)
        I= 16 Int(- pii/2,pii/2) (sin^2(t) cos^2(t)) dt = 4 Int(-pii/2,pii/2) sin^2(2t) dt
        t = 1/2 u, dt = 1/2 du ja (-pii/2,pii/2) -> (- pii, pii).
        I = 2 Int(-pii,pii) sin^2(u) du = - 2 Int(-pii,pii) (sin(u) d(cos(u)) =
        0 2 Int cos^2(u) du
        Siis I = Int(-pii,pii) (sin^2(u) cos^2(u)) du = 2 pii

        Jäi tuosta toiseksi viimeiseltä riviltä integroimisrajat pois, p.o.
        0 2 Int(-pii,pii) cos^2(u) du


    • Anonyymi
      • Anonyymi

        Kerron heti kärkeen, etten ole ikinä aikaisemmin näitä taso- enkä viivaintegraaleja pöyhinyt, ja luulinkin pärjääväni elämäni ilman niitä.
        Nyt kuitenkin katselin niitä yhdestä kirjasta, ja tommosia ne niistä vetelee.
        Ne merkkaa aina noilla nuolilla tason yli kulkusuunnat, en sitten tiedä mikä merkitys silläkin on...https://aijaa.com/gE1ueP


      • Anonyymi

        1. Kun 2 <= x <= 4 niin x^2 > sqrt(x) joten integroimisalueen määritelmässäsi tuo ehto
        x^2 <= y <= sqrt(x) on mahdoton.

        2. Int(0 <= x <= 4) (1 <= y <=5) 2 x^2 dx dy = Int(0 <= x <= 4) 2x^2 * 4 dx = Sij(0,4) ( 8/3 x^3) =
        512/3


      • Anonyymi
        Anonyymi kirjoitti:

        1. Kun 2 <= x <= 4 niin x^2 > sqrt(x) joten integroimisalueen määritelmässäsi tuo ehto
        x^2 <= y <= sqrt(x) on mahdoton.

        2. Int(0 <= x <= 4) (1 <= y <=5) 2 x^2 dx dy = Int(0 <= x <= 4) 2x^2 * 4 dx = Sij(0,4) ( 8/3 x^3) =
        512/3

        ykkös tehtävän sain tehtyä jotenkin, mutta tarvitsee olla sijoitukset ja kunnollisit väli vaiheet niin en saa sitä itse tehtyä
        https://gyazo.com/475ecf5e9a7d84c9ca0692fe4da4d25a
        tuossa esimerkki, tosin tuossa linkin esimerkissä eri rajat 1,2

        avaisitko vähän tuota kakkos tehtävää kuinka ne kaikki välivaiheet kulkee


      • Anonyymi
        Anonyymi kirjoitti:

        ykkös tehtävän sain tehtyä jotenkin, mutta tarvitsee olla sijoitukset ja kunnollisit väli vaiheet niin en saa sitä itse tehtyä
        https://gyazo.com/475ecf5e9a7d84c9ca0692fe4da4d25a
        tuossa esimerkki, tosin tuossa linkin esimerkissä eri rajat 1,2

        avaisitko vähän tuota kakkos tehtävää kuinka ne kaikki välivaiheet kulkee

        Lisää "välivaiheita":
        Int(0,4) (1,5) (2x^2) dx dy = Int(0,4) Sij(1,5) (2x^2 y) dx = Int(0,4) (2x^2(5 - 1)) dx =
        Int(0,4) (8 x^2 ) dx = Sij(0,4) 8/3 x^3 = 8*64/3 = 512/3


    • Anonyymi

      Kyllähän integroinnin x^2 -> sqrt(x) voi tietenkin suorittaa ja se on sama kuin miinus integraali sqrt(x) -> x^2. Mutta sinä kirjoitit tuon ehdon siten että ehto on mahdoton välillä 2 <= x <= 4.

      Int(2,4) (x^2, sqrt(x)) (xy) dx dy = Int(2,4) Sij(x^2, sqrt(x)) ( 1/2 x y^2) dx =
      1/2 Int(2,4) x(x - x^4) dx = 1/2 Int(2,4) (x^2 - x^5) dx = 1/2 Sij(2,4) (x^3/3 - x^6/6) =
      1/2 ( 8/3 - 64/6 - 64/3 4096/6) = 1/12 (16 - 64 - 128 4096) = 3920/12 = 980/3
      1/2 ( 64/3 - 4096/6 - 8/3 64/6) = 1/12 (128 - 4096 - 16 64) = - 3920/12 = - 980/3.

      • Anonyymi

        Tuli kirjoitusvirhe: tuo neljäs rivi joka päättyy ..= 980/3 minun piti virheellisenä poistaa mutta jäi tekemättä. Älä lue sitä riviä.


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Martinan aussikulta, missä?

      Mihin katosi Martina Aitolehden aussikulta kyselee Seiska!
      Kotimaiset julkkisjuorut
      365
      2128
    2. Haluaisin sun kanssa yhteisen

      Elämän. Haluun sut.
      Ikävä
      57
      1588
    3. Helena Koivu menettänyt lapsensa. Onko Mikko Koivulla oma laki?

      Voiko olla totta että äidiltä viedään lapset ja ei mitään syytä ole edes kerrottu äidille itselleen.?
      Kotimaiset julkkisjuorut
      155
      1200
    4. Pikkunaiselle terkkuja

      Olet parasta koko maailmassa! Kaikkein ihmeellisin. Olisitpa täällä. 🧡 harmaasusi
      Ikävä
      277
      1149
    5. Voisiko olla jopa niin

      Että kumpikin vähän pelkää totaalista heittäytymistä, koska tiedetään että se olisi menoa sen jälkeen. Samaan aikaan hal
      Ikävä
      67
      939
    6. Pystyisitkö ottamaan kaivattuasi

      Elämääsi miten pian
      Ikävä
      86
      915
    7. Varkaita kuhmossa

      Miksi kuhmolaiset ei tee mitään varkaille ja huumehörhöille, teloittaa pitäisi kaikki.
      Kuhmo
      33
      873
    8. Arto Satonen ja kokoomus 2020: Poliittiset virkanimitykset ovat koruptiota

      2025: Kokoomus on junttaamassa Arto Satosta Kelan johtoon ohi pätevämpien hakijoiden. https://www.hs.fi/politiikka/art-
      Maailman menoa
      112
      850
    9. Saara Aalto ja Teemu Roivainen paljastivat yllätysuutisen: "Rakkaus kietoi meidän kohtalomme..."

      Oho! Ex-pari on palannut yhteen musiikin merkeissä. He tekevät Rakkaustarina-nimeä kantavan 20-vuotisjuhlakiertueen syks
      Suomalaiset julkkikset
      11
      847
    10. K&T: Harvinainen haastattelu: Susanna Laine avaa suhdetta Petri Nygårdiin: "Olin sinkku vuosia..."

      Susanna Laine ei ole kertonut suhteestaan Petri Nygårdiin (Petri Laurila) julkisuudessa juurikaan. Aktiivisesti sosiaali
      Suomalaiset julkkikset
      8
      826
    Aihe