Olkoon d>0. Funktiolle f(x) piirretään pisteisiin x ja x-d tangentit. Millä x:n arvolla niiden välinen kulma on suurimmillaan? Kuvio: https://aijaa.com/y5YDrs
Tuossa esimerkkikuvassa oli f(x) = xe^x, mutta tehtäväksi voidaan asettaa
a) f(x) = e^x
b) f(x) = 1/3*x^3 x/5
Asetetaan b-kohdassa d=1.
Toinen tehtävä: Kun p(x) on toisen asteen polynomi ja sille piirretään kolmeen eri pisteeseen tangentit, niin näiden muodostama kolmio on alaltaan vakio. Todista tämä väite oikeaksi tai vääräksi.
Valokeilatehtävä
11
98
Vastaukset
- Anonyymi
a) x=d/2
- Anonyymi
2) Valitaan yksi piste parabelin huipusta ja kaksi muuta pistettä symmetrisesti se vierestä. Saadaan tangenteista kolmio. Kun viereisiä pisteteitä siirretään siiretään lähemmäksi huippua niin tangenttien muodostaman kolmion ala menee nollaan. Varmaan tuon voi jollain laskuesimerkilläkin osoittaa.
- Anonyymi
Ai niin joo, tokaan tehtävään semmoinen tarkennus, että siinä piti olla ne kahden muun pisteen x-koordinaattien etäisyydet keskimmäisestä annetut ja sitten ala on vakio (?) kun keskimmäistä liikutellaan.
Siis olkoon eräs piste (x0, p(x0) ja kaksi muuta (x0-d1, p(x0-d1)) sekä x0 d2, p(x0 d2)), missä d1 ja d2 ovat kiinteät positiiviset vakiot. - Anonyymi
Anonyymi kirjoitti:
Ai niin joo, tokaan tehtävään semmoinen tarkennus, että siinä piti olla ne kahden muun pisteen x-koordinaattien etäisyydet keskimmäisestä annetut ja sitten ala on vakio (?) kun keskimmäistä liikutellaan.
Siis olkoon eräs piste (x0, p(x0) ja kaksi muuta (x0-d1, p(x0-d1)) sekä x0 d2, p(x0 d2)), missä d1 ja d2 ovat kiinteät positiiviset vakiot.Tuntuisi mutulla siltä, että ei ole se ala vakio, koska kaarevuussäde ei ole vakio. Ympyrällä olisi..
- Anonyymi
Anonyymi kirjoitti:
Tuntuisi mutulla siltä, että ei ole se ala vakio, koska kaarevuussäde ei ole vakio. Ympyrällä olisi..
Minä sain, että ala olisi aina 1/4*|d1|*|d2|*|d1-d2|, kun pisteiden x-koordinaatit ovat x0, x0 d1 ja x0 d2 (eli molemmissa lisätään dj, helpompi tehdä samalla tavalla).
https://www.desmos.com/calculator/6keklruk95
Tein laskun Sagella, koodi on tuolla mukana. Pidin kaikki parametrit symboolisina ja ratkaisin leikkauspisteet ja sitten laskin kolmion alan determinanttina niinkuin se nyt menee tai shoelace formulalla: https://en.wikipedia.org/wiki/Shoelace_formula - Anonyymi
Anonyymi kirjoitti:
Minä sain, että ala olisi aina 1/4*|d1|*|d2|*|d1-d2|, kun pisteiden x-koordinaatit ovat x0, x0 d1 ja x0 d2 (eli molemmissa lisätään dj, helpompi tehdä samalla tavalla).
https://www.desmos.com/calculator/6keklruk95
Tein laskun Sagella, koodi on tuolla mukana. Pidin kaikki parametrit symboolisina ja ratkaisin leikkauspisteet ja sitten laskin kolmion alan determinanttina niinkuin se nyt menee tai shoelace formulalla: https://en.wikipedia.org/wiki/Shoelace_formulaAi niin paitsi p:n johtavan kertoimen oletin jostain syystä ykköseksi, mutta näköjään alan kaava pitää vielä kertoa sen itseisarvolla, jos näin ei ole.
Koodissa a mukana: https://www.desmos.com/calculator/4ecpkk0xav
- Anonyymi
Toinen tehtävä: Kyllä se väite on oikea tai väärä.
- Anonyymi
f:n tangentin kulmakerroin pisteessä x on f'(x).
a)f(x) = e^x
F(x) = arctan(e^x) - arctan(e^(x-d))
On minimoitava F.
Saadaan yhtälö (1 - e^d) (1 - e^(2x-d)) = 0 josta x = d/2.
Oli d > 0 joten 1 - e^(-d) > 0
1 - e^(2x-d) < 0 kun x > d/2 ja 1 - e^(2x-d) > 0 kun x < d/2
joten kyseessä on maksimi.
b) f(x) = 1/3 x^3 x/5, d = 1.
F(x) = arctan(x^2 1/5) - arctan(x^2 - 2x 6/5)
d/dx(arctan(x)) =1/(1 x^2)
Siitä vaan ratkomaan. Kyllä W-A laskee!- Anonyymi
Pitin sanomani: on maksimoitava F. Ja senhän teinkin lähtien siitä että F'(x) = 0.
Vielä paremmin: etsitään F:n ääriarvot ja niistä maksimi jos löytyy. - Anonyymi
Joo, b:stä tuli minun laskun mukaan x = 1/2 sqrt(13/5)/2 = 1,306. Tai W-A:llahan minäkin taisin sen yhtälön sitten ratkaista :D
https://www.desmos.com/calculator/dewvfsmm3v - Anonyymi
Anonyymi kirjoitti:
Joo, b:stä tuli minun laskun mukaan x = 1/2 sqrt(13/5)/2 = 1,306. Tai W-A:llahan minäkin taisin sen yhtälön sitten ratkaista :D
https://www.desmos.com/calculator/dewvfsmm3vW-A antaa tosiaan reaalijuuret x1 = 1/2 - sqrt(13/5)/2 = - 0,3062 ja x2 = 1/2 sqrt(13/5)/2 = 1,3062 yhtälölle F'(x) = 0.
Pistettä x1 ohitettaessa F:n merkki muuttuu : - -> , kyseessä minimi.
Pistettä x2 ihitettaessa F:n merkki muuttuu : -> - , kyseessä maksimi.
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
6 kW saunan lämmityksestä kohta 10 euron lisämaksu / kerta
Kokoomuslainen sähköyhtiöiden hallitsema Energiavirasto ehdottaa 5 kW:n rajaa, jonka ylittämisestä tulee lisämaksu. Tark2837868Duunarit hylkäsivät vasemmistoliiton, siitä tuli feministinaisten puolue
Pääluottamusmies Jari Myllykoski liittyi vasemmistoliittoon, koska se oli duunarien puolue. Sitä samaa puoluetta ei enää1714158Oppiiko vasemmistolaiset valehtelun jo kotonaan?
Sillä vasemmistolaiset/äärivasemmistolaiset valehtelee ja keksii asioita omasta päästään todella paljon. Esim. joku vas1582409Olen väsynyt tähän
En osaa lopettaa ja koen huonoa omaatuntoa tästä. Kaikki on muutenkin turhaa ja tekemisesi sattuvat. Tunteita on vain hy272083Seuraava hallituspohja - Kokoomus, kepu, persut + KD
Kokoomus saa ainakin 20% kannatuksen ensi vaaleissa, keskusta sanoisin noin 15%, persut todennäköisesti enemmän, ehkä 17702012- 471590
- 481547
Maailman laiskin eläin: persu
Persu ei ole eläessään laittanut rikkaa ristiin itsensä elättämiseen. Luonnossa tuollainen ei olisi mahdollista, mutta s71456Minneapolisin tapauksesta hyvä video
Runoilijan auto oli poikittain tiellä ja kun poliisit lähestyivät sitä, runotyttö painoi reippaadti kaasua. Auto syöksäh3421264- 1591179