Olkoon d>0. Funktiolle f(x) piirretään pisteisiin x ja x-d tangentit. Millä x:n arvolla niiden välinen kulma on suurimmillaan? Kuvio: https://aijaa.com/y5YDrs
Tuossa esimerkkikuvassa oli f(x) = xe^x, mutta tehtäväksi voidaan asettaa
a) f(x) = e^x
b) f(x) = 1/3*x^3 x/5
Asetetaan b-kohdassa d=1.
Toinen tehtävä: Kun p(x) on toisen asteen polynomi ja sille piirretään kolmeen eri pisteeseen tangentit, niin näiden muodostama kolmio on alaltaan vakio. Todista tämä väite oikeaksi tai vääräksi.
Valokeilatehtävä
11
82
Vastaukset
- Anonyymi
a) x=d/2
- Anonyymi
2) Valitaan yksi piste parabelin huipusta ja kaksi muuta pistettä symmetrisesti se vierestä. Saadaan tangenteista kolmio. Kun viereisiä pisteteitä siirretään siiretään lähemmäksi huippua niin tangenttien muodostaman kolmion ala menee nollaan. Varmaan tuon voi jollain laskuesimerkilläkin osoittaa.
- Anonyymi
Ai niin joo, tokaan tehtävään semmoinen tarkennus, että siinä piti olla ne kahden muun pisteen x-koordinaattien etäisyydet keskimmäisestä annetut ja sitten ala on vakio (?) kun keskimmäistä liikutellaan.
Siis olkoon eräs piste (x0, p(x0) ja kaksi muuta (x0-d1, p(x0-d1)) sekä x0 d2, p(x0 d2)), missä d1 ja d2 ovat kiinteät positiiviset vakiot. - Anonyymi
Anonyymi kirjoitti:
Ai niin joo, tokaan tehtävään semmoinen tarkennus, että siinä piti olla ne kahden muun pisteen x-koordinaattien etäisyydet keskimmäisestä annetut ja sitten ala on vakio (?) kun keskimmäistä liikutellaan.
Siis olkoon eräs piste (x0, p(x0) ja kaksi muuta (x0-d1, p(x0-d1)) sekä x0 d2, p(x0 d2)), missä d1 ja d2 ovat kiinteät positiiviset vakiot.Tuntuisi mutulla siltä, että ei ole se ala vakio, koska kaarevuussäde ei ole vakio. Ympyrällä olisi..
- Anonyymi
Anonyymi kirjoitti:
Tuntuisi mutulla siltä, että ei ole se ala vakio, koska kaarevuussäde ei ole vakio. Ympyrällä olisi..
Minä sain, että ala olisi aina 1/4*|d1|*|d2|*|d1-d2|, kun pisteiden x-koordinaatit ovat x0, x0 d1 ja x0 d2 (eli molemmissa lisätään dj, helpompi tehdä samalla tavalla).
https://www.desmos.com/calculator/6keklruk95
Tein laskun Sagella, koodi on tuolla mukana. Pidin kaikki parametrit symboolisina ja ratkaisin leikkauspisteet ja sitten laskin kolmion alan determinanttina niinkuin se nyt menee tai shoelace formulalla: https://en.wikipedia.org/wiki/Shoelace_formula - Anonyymi
Anonyymi kirjoitti:
Minä sain, että ala olisi aina 1/4*|d1|*|d2|*|d1-d2|, kun pisteiden x-koordinaatit ovat x0, x0 d1 ja x0 d2 (eli molemmissa lisätään dj, helpompi tehdä samalla tavalla).
https://www.desmos.com/calculator/6keklruk95
Tein laskun Sagella, koodi on tuolla mukana. Pidin kaikki parametrit symboolisina ja ratkaisin leikkauspisteet ja sitten laskin kolmion alan determinanttina niinkuin se nyt menee tai shoelace formulalla: https://en.wikipedia.org/wiki/Shoelace_formulaAi niin paitsi p:n johtavan kertoimen oletin jostain syystä ykköseksi, mutta näköjään alan kaava pitää vielä kertoa sen itseisarvolla, jos näin ei ole.
Koodissa a mukana: https://www.desmos.com/calculator/4ecpkk0xav
- Anonyymi
Toinen tehtävä: Kyllä se väite on oikea tai väärä.
- Anonyymi
f:n tangentin kulmakerroin pisteessä x on f'(x).
a)f(x) = e^x
F(x) = arctan(e^x) - arctan(e^(x-d))
On minimoitava F.
Saadaan yhtälö (1 - e^d) (1 - e^(2x-d)) = 0 josta x = d/2.
Oli d > 0 joten 1 - e^(-d) > 0
1 - e^(2x-d) < 0 kun x > d/2 ja 1 - e^(2x-d) > 0 kun x < d/2
joten kyseessä on maksimi.
b) f(x) = 1/3 x^3 x/5, d = 1.
F(x) = arctan(x^2 1/5) - arctan(x^2 - 2x 6/5)
d/dx(arctan(x)) =1/(1 x^2)
Siitä vaan ratkomaan. Kyllä W-A laskee!- Anonyymi
Pitin sanomani: on maksimoitava F. Ja senhän teinkin lähtien siitä että F'(x) = 0.
Vielä paremmin: etsitään F:n ääriarvot ja niistä maksimi jos löytyy. - Anonyymi
Joo, b:stä tuli minun laskun mukaan x = 1/2 sqrt(13/5)/2 = 1,306. Tai W-A:llahan minäkin taisin sen yhtälön sitten ratkaista :D
https://www.desmos.com/calculator/dewvfsmm3v - Anonyymi
Anonyymi kirjoitti:
Joo, b:stä tuli minun laskun mukaan x = 1/2 sqrt(13/5)/2 = 1,306. Tai W-A:llahan minäkin taisin sen yhtälön sitten ratkaista :D
https://www.desmos.com/calculator/dewvfsmm3vW-A antaa tosiaan reaalijuuret x1 = 1/2 - sqrt(13/5)/2 = - 0,3062 ja x2 = 1/2 sqrt(13/5)/2 = 1,3062 yhtälölle F'(x) = 0.
Pistettä x1 ohitettaessa F:n merkki muuttuu : - -> , kyseessä minimi.
Pistettä x2 ihitettaessa F:n merkki muuttuu : -> - , kyseessä maksimi.
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Ikävöin sinua kokoyön!
En halua odottaa, että voisin näyttää sinulle kuinka paljon rakastan sinua. Toivon, että uskot, että olen varsin hullun614428KALAJOEN UIMAVALVONTA
https://www.kalajokiseutu.fi/artikkeli/ei-tulisi-mieleenkaan-jattaa-pienta-yksinaan-hiekkasarkkien-valvomattomalla-uimar1523291Kadonnut poika hukkunut lietteeseen mitä kalajoella nyt on?
Jätelautta ajautunut merelle ja lapsi uponnut jätelautan alle?552560Jos sinä olisit pyrkimässä elämääni takaisin
Arvelisin sen johtuvan siitä, että olisit taas polttanut jonkun sillan takanasi. Ei taida löytyä enää kyliltä naista, jo492554- 1102285
- 241893
- 241681
- 301626
- 1691540
- 361275