Apua kaavojen pyörittämisessä

Anonyymi

En ymmärrä tämän kaavan pyörityksen logiikkaa. Kertokaa joku minulle mahdollisimman monella välivaiheella, miten tähän kaavan muotoon on päädytty? Luullakseni etumerkin pitää aina vaihtua vastakkaiseksi, kun siirretään toiselle puolelle, mutta tässä se ei tunnu menevän niin.

U=E-RI
R=E-U/I

16

364

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Tuo toinen yhtälö on väärin, sen pitäisi olla R = (E-U)/I

      Tässä välivaiheet:

      U = E-RI
      siirretään E toiselle puolelle, E:n etumerkki vaihtuu
      U-E = -RI
      kerrotaan molemmat puolet -1:llä, kaikki etumerkit vaihtuu
      E-U = RI
      jaetaan molemmat puolet I:llä
      (E-U)/I = R
      vaihdetaan puolet
      R = (E-U)/I

      • Anonyymi

        Minä muunnan yksinkertaisesti selkäytimellä näin:
        U = E-RI
        RI = E-U
        R = (E-U)/I


      • Anonyymi kirjoitti:

        Minä muunnan yksinkertaisesti selkäytimellä näin:
        U = E-RI
        RI = E-U
        R = (E-U)/I

        juu, mutta tässä nyt pyydettiin mahdollisimman monta välivaihetta


      • Toinen vaihtoehto, tämä on ehkä vähän selkeämpi:

        U = E-RI
        siirretään RI toiselle puolelle, RI:n etumerkki vaihtuu
        RI U = E
        siirretään U toiselle puolelle, U:n etumerkki vaihtuu
        RI = E-U
        jaetaan molemmat puolet I:llä
        R = (E-U)/I


      • Anonyymi

        Okei tuo ”kerrotaan molemmat puolet -1:llä” oli se ratkaiseva, mitä en tajunnut tehdä. Nyt sain tuon mallivastauksen kiitos!


      • Anonyymi
        Anonyymi kirjoitti:

        Okei tuo ”kerrotaan molemmat puolet -1:llä” oli se ratkaiseva, mitä en tajunnut tehdä. Nyt sain tuon mallivastauksen kiitos!

        Just. Yhtälö on kuin vaaka. Molemmille puolille voidaan aina tehdä samat "temput" ja tasapaino säilyy. Muuta ei tarvitse muistaa.

        Esimerkki
        a = b
        a-a = b - a
        b-a = 0
        tai
        a/a = b/a
        1 = b/a


    • Anonyymi

      Tällä voi kokeilla kaavan pyöritysmenetelmiä.
      COS φ = 1/√1 (Q/P)²
      Tuosta ratkaisee Loistehon Q lausekkeen.

      • Anonyymi

        Yhdet sulut kai jäi pois, siis COS φ = 1/√(1 (Q/P)²)


      • Anonyymi

        Taisi olla tuo kaava liian hapokasta S24 wannabe fyysikoille. 😃😄😆


      • Anonyymi
        Anonyymi kirjoitti:

        Taisi olla tuo kaava liian hapokasta S24 wannabe fyysikoille. 😃😄😆

        En tiedä onko tuosta kaavasta johdettu, mutta loisteholle löytyy kaava:
        Q = P√(1-COS φ²)/COS φ


      • Anonyymi

        cos φ = 1/√1 (Q/P)²
        cos²φ = 1/(1 Q/P)²
        1 (Q/P)² = 1/cos²φ
        (Q/P)² = 1/cos²φ - 1
        Q/P = sqrt(1/cos²φ - 1)

        → Q = P*sqrt(1/cos²φ - 1)


      • Anonyymi
        Anonyymi kirjoitti:

        cos φ = 1/√1 (Q/P)²
        cos²φ = 1/(1 Q/P)²
        1 (Q/P)² = 1/cos²φ
        (Q/P)² = 1/cos²φ - 1
        Q/P = sqrt(1/cos²φ - 1)

        → Q = P*sqrt(1/cos²φ - 1)

        Sieventyi kaava, cosini ei esiinny kaavassa kuin kertaalleen.
        Itse asiassa se on Q = P*tanφ


      • Anonyymi
        Anonyymi kirjoitti:

        cos φ = 1/√1 (Q/P)²
        cos²φ = 1/(1 Q/P)²
        1 (Q/P)² = 1/cos²φ
        (Q/P)² = 1/cos²φ - 1
        Q/P = sqrt(1/cos²φ - 1)

        → Q = P*sqrt(1/cos²φ - 1)

        Opettele sulkujen käyttöä vielä lisää.
        Virheitä on tuotoksessasi ihan vilisemällä. Tuloksena olisi nolla pistettä, josn kyse olisi kokeesta.


      • Anonyymi
        Anonyymi kirjoitti:

        Opettele sulkujen käyttöä vielä lisää.
        Virheitä on tuotoksessasi ihan vilisemällä. Tuloksena olisi nolla pistettä, josn kyse olisi kokeesta.

        Eikös tuo lopputulema, Q = P√(1/COS φ²-1) anna ihan oikean tuloksen?


      • Anonyymi
        Anonyymi kirjoitti:

        Eikös tuo lopputulema, Q = P√(1/COS φ²-1) anna ihan oikean tuloksen?

        No mietippäs nyt ihan aluks vaikka sitä, että siirtyykö cosini vasemmalta puolelta cosinina vai minä tonne oikealle puolelle?


    • Anonyymi

      Löytyykö netistä sellaista sivustoa jossa olisi kaikki sähkötekniikan kaavat, mielellään vielä laskurina että voisi suorittaa laskutoimituksia niillä?

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Laitetaas nyt kirjaimet tänne

      kuka kaipaa ja ketä ?
      Ikävä
      138
      10722
    2. Pieni häivähdys sinusta

      Olet niin totinen
      Ikävä
      52
      5140
    3. Taas ryssittiin oikein kunnolla

      r….ä hyökkäsi Viroon sikaili taas ajattelematta yhtään mitään https://www.is.fi/ulkomaat/art-2000011347289.html
      NATO
      45
      2353
    4. Lähetä terveisesi kaipaamallesi henkilölle

      Vauva-palstalta tuttua kaipaamista uudessa ympäristössä. Kaipuu jatkukoon 💘
      Ikävä
      108
      2170
    5. Missä olet ollut tänään kaivattuni?

      Ikävä sai yliotteen ❤️ En nähnyt sua tänään söpö mies
      Ikävä
      29
      2053
    6. Vanha Suola janottaa Iivarilla

      Vanha suola janottaa Siikalatvan kunnanjohtaja Pekka Iivaria. Mies kiertää Kemijärven kyläjuhlia ja kulttuuritapahtumia
      Kemijärvi
      13
      1661
    7. Valtimon Haapajärvellä paatti mäni nurin

      Ikävä onnettomuus Haapajärvellä. Vene hörpppi vettä matkalla saaren. Veneessä ol 5 henkilöä, kolme uiskenteli rantaan,
      Nurmes
      41
      1482
    8. Tiedän kuka sinä noista olet

      Lucky for you, olen rakastunut sinuun joten en reagoi negatiivisesti. Voit kertoa kavereillesi että kyl vaan, rakkautta
      Ikävä
      29
      1164
    9. Känniläiset veneessä?

      Siinä taas päästiin näyttämään miten tyhmiä känniläiset on. Heh heh "Kaikki osalliset ovat täysi-ikäisiä ja alkoholin v
      Nurmes
      34
      1123
    10. Rakastuminenhan on psykoosi

      Ei ihme että olen täysin vailla järkeä sen asian suhteen. Eipä olis aikoinaan arvannut, että tossa se tyyppi menee, jonk
      Ikävä
      55
      1024
    Aihe