Miten tämä ?
x^3-2x^2-5x+6=0
Miten lasketaan?
20
557
Vastaukset
- Anonyymi
Arvaat ensin, että x=1 on juuri jolloin voit jakaa yhtälön x-1:llä. Siitä se onkin jo helpompi jatkaa.
- Anonyymi
En nyt kyllä tajunnu, mutta kiitos.
- Anonyymi
Eiköhän juuri pitäisi laskea eikä arvata.
Yleiselle kolmannen asteen yhtälölle on olemassa ratkaisukaava. - Anonyymi
Anonyymi kirjoitti:
Eiköhän juuri pitäisi laskea eikä arvata.
Yleiselle kolmannen asteen yhtälölle on olemassa ratkaisukaava.Mutta aika hyvä arvaus tuo 1?
- Anonyymi
Anonyymi kirjoitti:
Eiköhän juuri pitäisi laskea eikä arvata.
Yleiselle kolmannen asteen yhtälölle on olemassa ratkaisukaava.Jos ratkaisutapaa ei ole mitenkään rajattu, niin koeratkaisun käyttö on aivan pätevä tapa.
Kolmannen asteen yhtälölle on toki olemassa ratkaisukaava, mutta sen käyttäminen on kovin työlästä.
On huomattavasti helpompaa, ja oppilaan matemaattista hahmottamista kehittävämpää, kun ensin otetaan kolmannen asteen yhtälöstä yksi juuri irralleen kokeilemalla.
Toisin sanoen kolmannen asteen yhtälö muodostuu juurista, jotka ovat muotoa (x+n)(x-n)(x+/-n). Tämä tulee selväksi siitä, että x on potenssiin kolme.
Kolmannen asteen yhtälöstä voidaan kokeilemalla erottaa juuri (x+n) taikka (x-n), jonka jälkeen jäljellä on kyseisen juuren lisäksi toisen asteen yhtälö, joka voidaan ratkaista yksinkertaisella toisen asteen yhtälön ratkaisukaavalla, joka antaa ratkaisuksi x=+/-n.
Kun yhtälö ollaan tässä tapauksessa sievennetty muotoon (x+2)(x^2-4x+3)=0, saadaan toisen asteen ratkaisukaavalla vastaukseksi x = +3 ja -1.
Koska ensimmäiseksi erotettiin kokeilemalle juuri (x+2) ovat muut juuret (x+3) ja (x-1).
Tämän voi tarkistaa kertomalla (x+2)(x+3)(x-1), jolloin lauseke sievenee muotoon x^3-2x^2-5x+6.
Kolmannen asteen yhtälön ratkaisu on näin ollen x= -1, 2, 3
Tämä tarkoittaa, että jos piirretään yhtälön kuvaaja x,y-koordinaatistoon, leikkaa kuvaaja x-akselin kohdissa x=-1, x=2 ja x=3,siis y on näillä x:n arvoilla 0.- Anonyymi
Kiitos pitkästä vastauksesta.
Sain yhtälöksi x^2(x-1)-x(x-1)-6(x-1) eli (x^2-x-6)(x-1)=0 eli nollakohdat -2 ja 3 ja sitten x-1=0 eli 1. Jeiii, osasin. 😄 - Anonyymi
Anonyymi kirjoitti:
Kiitos pitkästä vastauksesta.
Sain yhtälöksi x^2(x-1)-x(x-1)-6(x-1) eli (x^2-x-6)(x-1)=0 eli nollakohdat -2 ja 3 ja sitten x-1=0 eli 1. Jeiii, osasin. 😄Itselle heräsi kysymys, että miksi polynomin jako jakokulmassa opetetaan, jos tekijöihin jakaminen onnistuu aina noin näppärästi. Esim iteroimalla X = 1 ja polynomin jako jakokulmassa lausekkeella x-1 , jonka jälkeen tekijöihin jako.
- Anonyymi
Ratkaisu on -2, 1 ja 3.
- Anonyymi
Rationaalisten juurten keksimistä muuten helpottaa rationaalijuurilause. Koska polynomi on kokonaislukukertoiminen, niin mahdollisen rationaalisen juuren nimittäjän täytyy jakaa johtava termi eli tässä tapauksessa 1. Siis juuren on oltava itseasiassa kokonaisluku. (Rationaaliset algebralliset kokonaisluvut ovat tavallisia kokonaislukuja.)
Ja osoittajan (eli nyt siis itse juuren) täytyy jakaa vakiotermi eli 6. Testattavia siis 1, 2, 3, 6 ja näiden vastaluvut. - Anonyymi
P(x) = x^3 - 2x^2 - 5x + 6
P(x) = 0
Juurien summa = 2 ja niiden tulo = - 6.
Juuria on 3.
Voit kokeilla, monko kokonaislukuratkaisuja. Toisen ehon mukaan ne voivat olla
1,2,3 tai niin että kaksi noista on negatiivisia.
Kaikki eivät 1. ehdon mukaan voi olla positiivisoa.
Juuret voivat olla 1,-2,3 tai 1,2, -3
Yksi juurista on siis 1.
Nyt voit kokeilla tai sitten jatkaa jakamalla yhtälön vasen puoli P(x) lausekkeella x - 1.
Saadaan P(x) = (x-1) (x^2-x - 6) =0
Tuon toisen asteen yhtälön juuret ovat 3 ja - 2..
P(x) = (x-1) (x+2) (x - 3)
Tarkastetaan vielä alkuperäisestä:
1 - 2 - 5 + 6 = 0
-8 - 8 . +10+6 = 0
27 -18 - 15 + 6 = 0- Anonyymi
Tuli sanottua väärin. P.O.: ...että kaksi niistä on positiivisia ja yksi negatiivinen.
- Anonyymi
"Miten lasketaan?"
Lopputulos on nolla, eli ei yhtään mitään. Laskemiseenkaan ei silloin ole yhtään mitään syytä. - Anonyymi
kun kaikki desimaaliluvutkin muodostetaan nollasta ja ykkösestä, niin miten minä tein joskus assembly-kielellä esimerkkiohjelman että miten vaikka 57 x 9 tehdään :D
- Anonyymi
57 = 2^5+2^4+2^3 + 1 = 111001
9 = 2^3+1 = 1001
111001
1001
-------------- ------------------------------------
111001
000000
000000
111001
1000000001 = 513 - Anonyymi
Anonyymi kirjoitti:
57 = 2^5 2^4 2^3 1 = 111001
9 = 2^3 1 = 1001
111001
1001
-------------- ------------------------------------
111001
000000
000000
111001
1000000001 = 513Eivät pysyneet rivit paikallaan vaan kaikki alkavat samasta. Kertolaskussa nuo rivit siirtyisivät niin että alempi rivi on yhden pykälän vasemmalla.
Olokoon! - Anonyymi
Ei vastaa kysymykseen.
- Anonyymi
Anonyymi kirjoitti:
Ei vastaa kysymykseen.
Ei tämä ole mikään assembly-kielen palsta.
- Anonyymi
Anteeksi, ei ollut tarkoitus häiritä, vaan niin... hassuna ajatelmanakin laitoin.
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Hallitus pyrkii rajoittamaan kaupan omien halpamerkkien myyntiä
Helsingin Sanomien mukaan hallitus valmistelee lakihanketta, joka suitsii kaupan valtaa ja rajoittaa omien halpamerkkien992266- 2191917
Huomenna sähkö maksaa jo yli 60 snt/kWh. Milloin ALV putoaa?
Kysynkin persuilta, että milloin aiotte pudottaa sähkön arvonlisäveron kuten Marinin hallitus teki sähkön hinnan noustes1761742Persut päättivät hiilivoimaloiden alasajosta
Persut ovat Suomen kansan vastainen putinistiporukka, josta nyt maksamme kovaa hintaa.1011316- 381210
- 1221108
Onko jollekin vielä epäselvää Raamatun kanta homoseksuaaliseen käytökseen?
😺 On oma mielipiteesi mikä tahansa on hyvä muistaa, mikä on Jumalan mielipide. Edelliset ketjut ovat tulleet täyteen jo27682390kW kulutus
Joku kirjoitti sellaisesta tehomaksuaiheen yhteydessä. Tuollainen kulutushan vaatisi pääsulakkeiden kooksi jo vaikka mit180681Mietin sua liikaa
Mietin nytkin sitä, että millaista se olisi tulla kotiin, kun sinä olisit täällä vastassa. Tai niin päin, että sinä tuli47655Vanhemmassa miehessä
on sellaista elämän mukana tullutta viehättävää charmia. Hän paranee iän myötä niinkuin hyvä viini tai juusto! Tuli tuo50651