satunnaislukua väliltä 1-1000000. Millä todennäköisyydellä näiden lukujen summa on pinempi kuin 100000?
Otetaan 10
7
461
Vastaukset
- Anonyymi
pienempi
- Anonyymi
Käytännössä lähes nolla. Irwin-Hall jakauman mukaisesti lukujen summan keskiarvo on 5000000, ja varianssi 1012≈0.83331210≈0.8333. Arvioidaan tätä standardoidulla normaalijalaumalla, jolloin saadaan z-arvo hieman alle -5. Noin pitkälle en löytänyt taulukkoa, esim. https://www.ztable.net/?utm_content=cmp-true näyttää vain -4:ään asti. Mutta tuostakin näkee, että todennäköisyys on pienempi kuin 0,00001.
- Anonyymi
Simuloimalla näkee, että jos ehtona olisi "pienempi kuin miljoona" niin todennäköisyys olisi jotakin luokkaa 0.000007 +- 0.000003 % eli todennäköisyyden suuruusluokka on 7E-7. Tuo kymmenen miljoonan simulaation perusteella.
Kun ehto on "pienempi kuin 500000" niin sadalla miljoonalla simulaatiokierroksella ei tullut yhtään osumaa.
Tuo mainitsemasi "käytännössä lähes nolla" pitää aika hyvin paikkansa. - Anonyymi
Anonyymi kirjoitti:
Simuloimalla näkee, että jos ehtona olisi "pienempi kuin miljoona" niin todennäköisyys olisi jotakin luokkaa 0.000007 - 0.000003 % eli todennäköisyyden suuruusluokka on 7E-7. Tuo kymmenen miljoonan simulaation perusteella.
Kun ehto on "pienempi kuin 500000" niin sadalla miljoonalla simulaatiokierroksella ei tullut yhtään osumaa.
Tuo mainitsemasi "käytännössä lähes nolla" pitää aika hyvin paikkansa.Käslilaskuarviona sain 7.9E-7.
- Anonyymi
Todennäköisyys sille että arvottu luku on alle satatuhatta on yksi kymmenestä. Todennäköisyys sille että jokainen kymmenen arvottua lukua on alle satatuhatta on
1/(10^10) =1E-10 eli yksi kymmenesmiljardisosa. Haettu todennäköisyys on paljon tätä pienempi.
Suuruusluokkana voisi olla todennäköisyys sille, että jokainen arvottu luku on alle kymmenentuhatta eli
1/(100^10) = 1E-20- Anonyymi
"Suuruusluokkana voisi olla todennäköisyys sille, että jokainen arvottu luku on alle kymmenentuhatta eli 1/(100^10) = 1E-20"
Löysit oikean lähestymistavan. Tosin tuo on varmuudella liian pieni, koska joukossa saa olla kymmentätuhatta suurempia lukuja. Mutta noin arvioimalla päästään tarkempaan arvoon:
Jos otetaan kymmenen satunnaisluvun väliltä 1 ... 20 000 joukkoja, ne summautuvat keskimäärin sataan tuhanteen, puolet summista yli ja puolet ali. 20 000 on viideskymmenesosa miljoonasta, joten tn, että kaikki kymmenen satunnailukua ovat alle 20 000 on 1/(50^10) = 1,024E-17. Näistä puolet summautuu alle sadan tuhannen, eli todennäköisyydelllä 0,512€-17. Tämäkin arvio on vielä liian alhainen, sillä tämä rajoittuu vain niihin joukkoihin, jotka eivät sisällä kahtakymmentätuhatta suurempia lukuja. - Anonyymi
Jos luvut otetaan väliltä 1-1000, niin millä tn niiden summa on alle 100?
Monesko desimaali muuttuu?
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
6 kW saunan lämmityksestä kohta 10 euron lisämaksu / kerta
Kokoomuslainen sähköyhtiöiden hallitsema Energiavirasto ehdottaa 5 kW:n rajaa, jonka ylittämisestä tulee lisämaksu. Tark2867963Duunarit hylkäsivät vasemmistoliiton, siitä tuli feministinaisten puolue
Pääluottamusmies Jari Myllykoski liittyi vasemmistoliittoon, koska se oli duunarien puolue. Sitä samaa puoluetta ei enää1754199Oppiiko vasemmistolaiset valehtelun jo kotonaan?
Sillä vasemmistolaiset/äärivasemmistolaiset valehtelee ja keksii asioita omasta päästään todella paljon. Esim. joku vas1822490Olen väsynyt tähän
En osaa lopettaa ja koen huonoa omaatuntoa tästä. Kaikki on muutenkin turhaa ja tekemisesi sattuvat. Tunteita on vain hy302407Seuraava hallituspohja - Kokoomus, kepu, persut + KD
Kokoomus saa ainakin 20% kannatuksen ensi vaaleissa, keskusta sanoisin noin 15%, persut todennäköisesti enemmän, ehkä 17942097- 471600
- 491575
Maailman laiskin eläin: persu
Persu ei ole eläessään laittanut rikkaa ristiin itsensä elättämiseen. Luonnossa tuollainen ei olisi mahdollista, mutta s141507Minneapolisin tapauksesta hyvä video
Runoilijan auto oli poikittain tiellä ja kun poliisit lähestyivät sitä, runotyttö painoi reippaadti kaasua. Auto syöksäh3421284- 1661245