satunnaislukua väliltä 1-1000000. Millä todennäköisyydellä näiden lukujen summa on pinempi kuin 100000?
Otetaan 10
7
425
Vastaukset
- Anonyymi
pienempi
- Anonyymi
Käytännössä lähes nolla. Irwin-Hall jakauman mukaisesti lukujen summan keskiarvo on 5000000, ja varianssi 1012≈0.83331210≈0.8333. Arvioidaan tätä standardoidulla normaalijalaumalla, jolloin saadaan z-arvo hieman alle -5. Noin pitkälle en löytänyt taulukkoa, esim. https://www.ztable.net/?utm_content=cmp-true näyttää vain -4:ään asti. Mutta tuostakin näkee, että todennäköisyys on pienempi kuin 0,00001.
- Anonyymi
Simuloimalla näkee, että jos ehtona olisi "pienempi kuin miljoona" niin todennäköisyys olisi jotakin luokkaa 0.000007 +- 0.000003 % eli todennäköisyyden suuruusluokka on 7E-7. Tuo kymmenen miljoonan simulaation perusteella.
Kun ehto on "pienempi kuin 500000" niin sadalla miljoonalla simulaatiokierroksella ei tullut yhtään osumaa.
Tuo mainitsemasi "käytännössä lähes nolla" pitää aika hyvin paikkansa. - Anonyymi
Anonyymi kirjoitti:
Simuloimalla näkee, että jos ehtona olisi "pienempi kuin miljoona" niin todennäköisyys olisi jotakin luokkaa 0.000007 - 0.000003 % eli todennäköisyyden suuruusluokka on 7E-7. Tuo kymmenen miljoonan simulaation perusteella.
Kun ehto on "pienempi kuin 500000" niin sadalla miljoonalla simulaatiokierroksella ei tullut yhtään osumaa.
Tuo mainitsemasi "käytännössä lähes nolla" pitää aika hyvin paikkansa.Käslilaskuarviona sain 7.9E-7.
- Anonyymi
Todennäköisyys sille että arvottu luku on alle satatuhatta on yksi kymmenestä. Todennäköisyys sille että jokainen kymmenen arvottua lukua on alle satatuhatta on
1/(10^10) =1E-10 eli yksi kymmenesmiljardisosa. Haettu todennäköisyys on paljon tätä pienempi.
Suuruusluokkana voisi olla todennäköisyys sille, että jokainen arvottu luku on alle kymmenentuhatta eli
1/(100^10) = 1E-20- Anonyymi
"Suuruusluokkana voisi olla todennäköisyys sille, että jokainen arvottu luku on alle kymmenentuhatta eli 1/(100^10) = 1E-20"
Löysit oikean lähestymistavan. Tosin tuo on varmuudella liian pieni, koska joukossa saa olla kymmentätuhatta suurempia lukuja. Mutta noin arvioimalla päästään tarkempaan arvoon:
Jos otetaan kymmenen satunnaisluvun väliltä 1 ... 20 000 joukkoja, ne summautuvat keskimäärin sataan tuhanteen, puolet summista yli ja puolet ali. 20 000 on viideskymmenesosa miljoonasta, joten tn, että kaikki kymmenen satunnailukua ovat alle 20 000 on 1/(50^10) = 1,024E-17. Näistä puolet summautuu alle sadan tuhannen, eli todennäköisyydelllä 0,512€-17. Tämäkin arvio on vielä liian alhainen, sillä tämä rajoittuu vain niihin joukkoihin, jotka eivät sisällä kahtakymmentätuhatta suurempia lukuja. - Anonyymi
Jos luvut otetaan väliltä 1-1000, niin millä tn niiden summa on alle 100?
Monesko desimaali muuttuu?
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Työsuhdepyörän veroetu poistuu
Hallituksen veropoliittisen Riihen uutisia: Mitä ilmeisimmin 1.1.2026 alkaen työsuhdepyörän kuukausiveloitus maksetaan2377137Pakko tulla tänne
jälleen kertomaan kuinka mahtava ja ihmeellinen sekä parhaalla tavalla hämmentävä nainen olet. En ikinä tule kyllästymää451335Fuengirola.fi: Danny avautuu yllättäen ex-rakas Erika Vikmanista: "Sanoisin, että hän on..."
Danny matkasi Aurinkorannikolle Helmi Loukasmäen kanssa. Musiikkineuvoksella on silmää naiskauneudelle ja hänen ex-raka291188Hävettää muuttaa Haapavedelle.
Joudun töiden vuoksi muuttamaan Haapavedelle, kun työpaikkani siirtyi sinne. Nyt olen joutunut pakkaamaan kamoja toisaal50925- 75921
Katseestasi näin
Silmissäsi syttyi hiljainen tuli, Se ei polttanut, vaan muistutti, että olin ennenkin elänyt sinun rinnallasi, jossain a62887Työhuonevähennys poistuu etätyöntekijöiltä
Hyvä. Vituttaa muutenkin etätyöntekijät. Ei se tietokoneen naputtelu mitään työtä ole.96886Toinen kuva mikä susta on jäänyt on
tietynlainen saamattomuus ja laiskuus. Sellaineen narsistinen laiskanpuoleisuus. Palvelkaa ja tehkää.38831Tietenkin täällä
Kunnan kyseenalainen maine kasvaa taas , joku huijannut monen vuoden ajan peltotukia vilpillisin keinoin.14786- 43773