Otetaan 10

Anonyymi-ap

satunnaislukua väliltä 1-1000000. Millä todennäköisyydellä näiden lukujen summa on pinempi kuin 100000?

7

456

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      pienempi

    • Anonyymi

      Käytännössä lähes nolla. Irwin-Hall jakauman mukaisesti lukujen summan keskiarvo on 5000000, ja varianssi 1012≈0.83331210​≈0.8333. Arvioidaan tätä standardoidulla normaalijalaumalla, jolloin saadaan z-arvo hieman alle -5. Noin pitkälle en löytänyt taulukkoa, esim. https://www.ztable.net/?utm_content=cmp-true näyttää vain -4:ään asti. Mutta tuostakin näkee, että todennäköisyys on pienempi kuin 0,00001.

      • Anonyymi

        Simuloimalla näkee, että jos ehtona olisi "pienempi kuin miljoona" niin todennäköisyys olisi jotakin luokkaa 0.000007 +- 0.000003 % eli todennäköisyyden suuruusluokka on 7E-7. Tuo kymmenen miljoonan simulaation perusteella.

        Kun ehto on "pienempi kuin 500000" niin sadalla miljoonalla simulaatiokierroksella ei tullut yhtään osumaa.

        Tuo mainitsemasi "käytännössä lähes nolla" pitää aika hyvin paikkansa.


      • Anonyymi
        Anonyymi kirjoitti:

        Simuloimalla näkee, että jos ehtona olisi "pienempi kuin miljoona" niin todennäköisyys olisi jotakin luokkaa 0.000007 - 0.000003 % eli todennäköisyyden suuruusluokka on 7E-7. Tuo kymmenen miljoonan simulaation perusteella.

        Kun ehto on "pienempi kuin 500000" niin sadalla miljoonalla simulaatiokierroksella ei tullut yhtään osumaa.

        Tuo mainitsemasi "käytännössä lähes nolla" pitää aika hyvin paikkansa.

        Käslilaskuarviona sain 7.9E-7.


    • Anonyymi

      Todennäköisyys sille että arvottu luku on alle satatuhatta on yksi kymmenestä. Todennäköisyys sille että jokainen kymmenen arvottua lukua on alle satatuhatta on
      1/(10^10) =1E-10 eli yksi kymmenesmiljardisosa. Haettu todennäköisyys on paljon tätä pienempi.

      Suuruusluokkana voisi olla todennäköisyys sille, että jokainen arvottu luku on alle kymmenentuhatta eli
      1/(100^10) = 1E-20

      • Anonyymi

        "Suuruusluokkana voisi olla todennäköisyys sille, että jokainen arvottu luku on alle kymmenentuhatta eli 1/(100^10) = 1E-20"

        Löysit oikean lähestymistavan. Tosin tuo on varmuudella liian pieni, koska joukossa saa olla kymmentätuhatta suurempia lukuja. Mutta noin arvioimalla päästään tarkempaan arvoon:

        Jos otetaan kymmenen satunnaisluvun väliltä 1 ... 20 000 joukkoja, ne summautuvat keskimäärin sataan tuhanteen, puolet summista yli ja puolet ali. 20 000 on viideskymmenesosa miljoonasta, joten tn, että kaikki kymmenen satunnailukua ovat alle 20 000 on 1/(50^10) = 1,024E-17. Näistä puolet summautuu alle sadan tuhannen, eli todennäköisyydelllä 0,512€-17. Tämäkin arvio on vielä liian alhainen, sillä tämä rajoittuu vain niihin joukkoihin, jotka eivät sisällä kahtakymmentätuhatta suurempia lukuja.


      • Anonyymi

        Jos luvut otetaan väliltä 1-1000, niin millä tn niiden summa on alle 100?

        Monesko desimaali muuttuu?


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Suomen markka otettiin käyttöön vuonna 1860

      Suomi käytti vuoteen 1840 asti rahayksikkönään rinnakkain Ruotsin riikintaalareita ja Venäjän ruplaa. Tämän jälkeen oli
      Maailman menoa
      37
      9291
    2. "Mä elän vieläkin"

      Ikurin turbiini vetäisi taannoin lainabiisin Topin (RIP också) ja kumppaneiden kanssa. Toivottavasti on yläkerrassa kunn
      Tampere
      32
      3821
    3. Yksityinen sektori aiheuttanut Suomen taantuman

      Investointien sijasta nostaneet voitot osinkoina omistajille. Ehdotan korjausliikkeenä yksityisen sektorin sosialisoimi
      Maailman menoa
      80
      2413
    4. Pate Mustajärvi on kuollut

      Ihan pari tuntia sitten. Että sellaista. https://www.is.fi/viihde/art-2000011715177.html
      Maailman menoa
      118
      2360
    5. Kylläpä asiat onkin nyt hyvin verrattuna Sannan aikaan

      Sannan aikana aähkön alv oli 10%, nyt 25,5%. Ajatelkaa nytkin pörssisähkö on ilmaista, keskellä talvea! Bensan hinta on
      Maailman menoa
      25
      1925
    6. Kaivatullesi viesti ensi vuoteen?

      Kerro meneekö naiselle vai miehelle ja vähintään yksi tunniste, esim. kirjain.
      Ikävä
      36
      1794
    7. Miten ikinä kelpaisin sulle

      Sinä saat niiltä muilta naisilta paljon enemmän, mitä minulta... Tai mihin minä olisin valmis. Enkä edes olisi niin tait
      Ikävä
      15
      1590
    8. Edes vitamiinit eivät taanneet loputonta elämää

      Nimittäin niistä rahaa itselleen taikonut tohtori siirtyi tuonpuoleiseen.
      Maailman menoa
      31
      1406
    9. Kuinka kauan vielä

      jaksetaan vastustaa toisiamme?
      Ikävä
      71
      1247
    10. Esko ja Martina viettävät joulua

      Entisen avioparin joulunvietto on ylittänyt IS uutiskynnyksen
      Kotimaiset julkkisjuorut
      171
      1038
    Aihe