Gödelin 1. epätäydellisyyslause sanoo, että kun meillä on tietyt ehdot täyttävä formaali systeemi niin siellä on tosi lause jota ei siinä systeemissä voi todistaa.
Puuttumatta nyt siihen, miten lause voi olla tosi vaikka sillä ei ole todistusta kysyn nseuraavaa:
Oletetaan, että tuollaisen järjestemän aksioomien njoukko on A(1). On olemassa lause L(1) joka on tosi mutta ei seuraa A(1)-aksioomista. Lisätään tämä aksioomaksi jolloin saadaan uusi aksioomajoukko A(2).L(1) on tässä järjestelmässä todistettavissa, onhan se aksiooma. Nyt tässäkin A(2)-järjestelmässä on Gödelin mukaan tosi lause, L(2), joka ei ole A(2)-aksioomien avulla todistettavissa. Lisätään L(2) aksioomaksi jolloin saadaan aksioomajoukko A(3).
Menettelyä voidaan jatkaa loputtomasti. Onko siis niin, että tuollainen Gödelin tarkoittama järjestelmä sisältää itse asiassa numeroituvan määrän lauseita, mjotka ovat tosia mutta eivät ole todistettavissa. Lauseet L(i) , i = 1,2,... voidaan formuloida A(1)-järjestelmässä, mitään uuttahan ei sen mahdollisiin lauseisiin lisätty. Mutta yksikään lause L(i+1) eim ole todistettavissa A(i)-järjestelmässä eikä siis myöskään A(1):ssä.
Onko asia näin?
Gödelin 1. epätäydellisyyslause
5
529
Vastaukset
- Anonyymi
Aksioomajärjestelmän pitää olla sen verran suuri, että se kattaa kokonaislukuaritmetiikan vasta sitten Gödelin epätäydellisyyslause tulee kyseeseen.
Eli voidaan hyvin tuottaa aksiomaattisia järjestelmiä jotka ovat ristiriidattomia ja täydellisiä, kunhan järjestelmä on riittävän suppea (ja käytännössä hyödytön)- Anonyymi
Kirjoitin kyllä "tietyt ehdot täyttävä formaali systeemi". Tämä kyllä piti sisällään tuon aksioomajärjestelmän suuruuden. En vain halunnut kommentissani ruveta alkeista luennoimaan vaan oletin, että jos joku ymmärtää kommenttini, tajuaa myös tämän edelletyksen.
Kysymykseni oli, että onko tällaisessa järjestelmässä jopa numeroituva määrä ei-todistettavissa olevia lauseita.
- Anonyymi
Vastaus: kyllä se on noin.
- Anonyymi
Aloituksessani olisin voinut sanoa näinkin:
Oletetaan, että noita Gödelin tarkoittamia tosia lauseita on äärellinen määrä. Lisätään nämä alkuperäisen systeemin aksioomeilsi. Uudessa systeemissä ei siis olke enää tällaisia lauseita. Mutta tämä on Gödelin mukaan mahdotonta. Siis noita lauseita ei voi olla vain äärellinen määrä.
Mutta nyt siihen toiseen asiaan:
Mitä tarkoittaa, että lause on tosi vaikka sille ei ole todistusta?- Anonyymi
Jokainen lause on tosi tai epätosi.
Gödelin mukaan on tosia lauseita, joita ei voi todistaa todeksi lähtien systeemin aksioomista.
Eli niille ei ole todistusta kyseisen systeemin puitteissa. Et voi tietenkään systeemin puitteissa todistaa että jokin tietty lause olisi juuri sellainen että sitä ei voi todistaa.
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Yritystuet 10 mrd. vuodessa, eli yrittäjäriski valtiolla kuten kommunismissa
Pelkästään Viking Linen viinanhakuristeilyitä sponsoroidaan 20 miljoonalla eurolla vuosittain. Dieselin verotukikin on1169708- 959407
- 217891
Sannan kirja USA:n bestseller!
"Congratulations to Sanna Marin's HOPE IN ACTION, officially a USA TODAY bestseller!" Kertoo Scribner. Mitäs persut tä327255Sture Fjäder haluaa tuensaajien nimet julki
Kokoomuspoliitikko haluaa yli 800 euroa kuukaudessa tukia saavien nimet julki. Ehkä olisi syytä julkaista myös kuvat? h1776274Luotathan siihen tunteeseen, joka välillämme on?
Uskothan myös, että se kestää tämän? Kaipaan sinua valtavasti. Vielä tehdään yhdessä tästä jotain ihmeellistä ja kaunist585418Onnettomuus
Hukkajärventiellä kolaroi lavetti ja henkilöauto. Uutista ei missään! Hys hys ollaanko hiljaa tästäkin?84768En saa sua mielestäni vaikka tekisin mitä
Mikä tähän auttaa.. ei mikään. Edes aika. Kaivan sut kohta vaikka kivenkolosta että saan kysyä haluatko sinäkin💛234385Metsäalan rikolliset
Jokohan alkaa vähitellen kaatua kulissit näillä ihmiskauppaa harjoittavilla firmoilla.294356- 384313