Olkoon X = R². Määritä joukko int A, kun A = { (x, y) ∈ R² : xy ≥ 0, x ≥ 0, | y | < 1 }.
Sain tällaisen ratkaisun:
int A = { (x, y) ∈ R² : x > 0, 0 < y < 1 }
Miten tämä kannattaisi perustella (ilman kuvaan nojautumista)?
Lisäksi olisin kiitollinen, jos joku jaksaisi ilmaista täsmällisesti joukon ∂A.
Sisäpisteiden määrittäminen
6
127
Vastaukset
- Laskee,
Totea ensin että A = { (x, y) ∈ R² : x ≥ 0, 1 < y ≥ 0 }
ja perustele sitten miksi reunapisteet, joilla x=0 tai y=0 eivät ole sisäpisteitä.
Perustele vielä, miksi jokainen muu joukon A piste on sisäpiste.- Laskee,
Korjaan: piti olla
Totea ensin että A = { (x, y) ∈ R² : x ≥ 0, 1 > y ≥ 0 } - Topologiaa
Laskee, kirjoitti:
Korjaan: piti olla
Totea ensin että A = { (x, y) ∈ R² : x ≥ 0, 1 > y ≥ 0 }Mietinkin, että joukko A voitaisiin ilmaista helpommin.
Sain tällaista aikaan:
Olkoon p = (x, y) ∈ A, missä x ≠ 0 ja y ≠ 0.
Valitaan r = min { x, 1 - y, y }.
Tällöin B(p, r) ⊂ A.
Olkoon p = (0, y) ∈ A.
Tällöin mikä tahansa kuulaympäristö B(p, r) sisältää esim. pisteen (-½r, y) ∉ A.
Olkoon p = (x, 0) ∈ A.
Tällöin mikä tahansa kuulaympäristö B(p, r) sisältää esim. pisteen (x, -½r) ∉ A.
Pitäisikö vielä todeta/lisätä jotain? - BananaBoy69
"Totea ensin että A = { (x, y) ∈ R² : x ≥ 0, 1 > y ≥ 0 }"
Minusta x-akselin alapuolelle jäävä jana { (x, y)∈R²: x = 0, -1 < y < 0 } kuuluu myös joukkoon A.
∂A = { (x, y)∈R²: x = 0, -1 ≤ y ≤ 1 } ∪ { (x, y)∈R²: x ≥ 0, y = 0 } ∪ { (x, y)∈R²: x ≥ 0, y ≥ 1 }
Jana { (x, y) ∈ ℝ² | x = 0 ∧ −1 < y < 0 } todellakin kuuluu joukkoon A. Tämä ei vaikuta lopputulokseen eli A:n sisäpisteiden joukkoon, mutta pätevään päättelyyn (oikeaan vastaukseen) tarvitaan – jos muuten sovelletaan ehdotettua logiikkaa – tämän janan mainitseminen ja sen osoittaminen, että sen pisteet eivät ole sisäpisteitä.
WolframAlphakin toteaa, että joukon A ehto on ekvivalentti ehdon
(x = 0 ∧ −1 < y < 1) ∨ (x > 0 ∧ 0 ≤ y < 1)
kanssa (ehto kirjoitettu tässä loogisena lausekkeena, WolframAlpha ilmaisee asian ”ratkaisuina”, solutions).
http://www.wolframalpha.com/input/?i= xy ≥ 0, x ≥ 0, | y | < 1- tietäjä
"Jana { (x, y) ∈ ℝ² | x = 0 ∧ −1 < y < 0 }"
Tuo ei ole jana. Jana on nimittäin aina suljettu joukko, mutta tämä ei ole.
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Mies, näen sinua hetken
ja olet mielessä ikuisuuden. Toisia näen ikuisuuden ja he eivät jää mieleen hetkeksikään. Muistan jokaisen kohtaamisen183814Riikan perintö: ennätysvelka, ennätystyöttömyys ja ennätysverotus
Tavallisen keskituloisen suomalaisen verotus on kireintä vuosikymmeniin, ja ensi vuonna palkansaajien käteen jää vieläki2223708Riikka Purra on ihana, jämpti
Hän yrittää saada Suomen taas kuntoon. Sanoo asiat suoraan, eikä piiloudu kapulakielen taakse. Riikan kaltaisia päättä972662SDP haluaa LISÄÄ veroja bensa-autoille!
Sdp:n vaihtoehtobudjetti esittää polttomoottoriautoille lisää veroja Sdp esittää tuoreessa vaihtoehtobudjetissaan verot202574"Purra löylytti oppositiota", sanoi naistoimittaja Pöllöraadissa
Kyllä, Purra tekee juuri sitä työtä mitä hänen tuossa asemassa pitää tehdä, hän antaa oppositiolle takaisin samalla mita322324Antti Lindtman kiitti valtiovarainministeri Purraa
Ministeri Purra kertoi ottavasa vastuun EU:n alijäämämenettelyyn joutumisesta. Hän myös sanoi tietävänsä, että Lindtman192247Henkilökohtaisia paljastuksia Dubaista - Kohujulkkis Sofia Belorf on äitipuoli ja puoliso!
Tiesitkö, että Sofia on äitipuoli ja rakastava puoliso? Sofia Belorf saa oman sarjan, jossa seurataan hänen Bling Bling642246Suomalaisten enemmistö on (ateisteja / fiksuja / sosialisteja)
Tai jokin noiden yhdistelmä, koska S-ryhmän markkinaosuus päivittäistavarakaupasta on yli 50 prosenttia.131946Sorsa: kuvaputki - Lipponen: kaasuputki - Marin: ryppyputki
Nuo kolme demaria ovat poikkeuksia Suomen poliittisessa historiassa. Ovat ainoita, jotka ovat kyenneet nostamaan puolue581778- 901611