Sisäpisteiden määrittäminen

Topologiaa

Olkoon X = R². Määritä joukko int A, kun A = { (x, y) ∈ R² : xy ≥ 0, x ≥ 0, | y | < 1 }.

Sain tällaisen ratkaisun:
int A = { (x, y) ∈ R² : x > 0, 0 < y < 1 }
Miten tämä kannattaisi perustella (ilman kuvaan nojautumista)?

Lisäksi olisin kiitollinen, jos joku jaksaisi ilmaista täsmällisesti joukon ∂A.

6

117

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Laskee,

      Totea ensin että A = { (x, y) ∈ R² : x ≥ 0, 1 < y ≥ 0 }
      ja perustele sitten miksi reunapisteet, joilla x=0 tai y=0 eivät ole sisäpisteitä.
      Perustele vielä, miksi jokainen muu joukon A piste on sisäpiste.

      • Laskee,

        Korjaan: piti olla
        Totea ensin että A = { (x, y) ∈ R² : x ≥ 0, 1 > y ≥ 0 }


      • Topologiaa
        Laskee, kirjoitti:

        Korjaan: piti olla
        Totea ensin että A = { (x, y) ∈ R² : x ≥ 0, 1 > y ≥ 0 }

        Mietinkin, että joukko A voitaisiin ilmaista helpommin.

        Sain tällaista aikaan:

        Olkoon p = (x, y) ∈ A, missä x ≠ 0 ja y ≠ 0.
        Valitaan r = min { x, 1 - y, y }.
        Tällöin B(p, r) ⊂ A.

        Olkoon p = (0, y) ∈ A.
        Tällöin mikä tahansa kuulaympäristö B(p, r) sisältää esim. pisteen (-½r, y) ∉ A.

        Olkoon p = (x, 0) ∈ A.
        Tällöin mikä tahansa kuulaympäristö B(p, r) sisältää esim. pisteen (x, -½r) ∉ A.

        Pitäisikö vielä todeta/lisätä jotain?


      • BananaBoy69

        "Totea ensin että A = { (x, y) ∈ R² : x ≥ 0, 1 > y ≥ 0 }"

        Minusta x-akselin alapuolelle jäävä jana { (x, y)∈R²: x = 0, -1 < y < 0 } kuuluu myös joukkoon A.

        ∂A = { (x, y)∈R²: x = 0, -1 ≤ y ≤ 1 } ∪ { (x, y)∈R²: x ≥ 0, y = 0 } ∪ { (x, y)∈R²: x ≥ 0, y ≥ 1 }


    • Jana { (x, y) ∈ ℝ² | x = 0 ∧ −1 < y < 0 } todellakin kuuluu joukkoon A. Tämä ei vaikuta lopputulokseen eli A:n sisäpisteiden joukkoon, mutta pätevään päättelyyn (oikeaan vastaukseen) tarvitaan – jos muuten sovelletaan ehdotettua logiikkaa – tämän janan mainitseminen ja sen osoittaminen, että sen pisteet eivät ole sisäpisteitä.

      WolframAlphakin toteaa, että joukon A ehto on ekvivalentti ehdon
      (x = 0 ∧ −1 < y < 1) ∨ (x > 0 ∧ 0 ≤ y < 1)
      kanssa (ehto kirjoitettu tässä loogisena lausekkeena, WolframAlpha ilmaisee asian ”ratkaisuina”, solutions).

      http://www.wolframalpha.com/input/?i= xy ≥ 0, x ≥ 0, | y | < 1

      • tietäjä

        "Jana { (x, y) ∈ ℝ² | x = 0 ∧ −1 < y < 0 }"

        Tuo ei ole jana. Jana on nimittäin aina suljettu joukko, mutta tämä ei ole.


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Useita puukotettu Tampereella

      Mikäs homma tämä nyt taas on? "Useaa henkilöä on puukotettu Tampereen keskustassa kauppakeskus Ratinan lähistöllä." ht
      Tampere
      283
      5338
    2. Laitetaas nyt kirjaimet tänne

      kuka kaipaa ja ketä ?
      Ikävä
      69
      5307
    3. Kuka rääkkää eläimiä Puolangalla?

      Poliisi ampui toistakymmentä nälkiintynyttä eläintä Puolangalla Tilalta oli ollut karkuteillä lähes viisikymmentä nälkii
      Puolanka
      96
      4025
    4. Leipivaaran päällä on kuoleman hiljaista.

      Suru vai suuri helpotus...
      Puolanka
      52
      2840
    5. Pieni häivähdys sinusta

      Olet niin totinen
      Ikävä
      22
      2437
    6. Koska näit kaivattusi viimeksi

      Milloin tapasit rakkaasi? Ja etenikö suhde yhtään?
      Ikävä
      119
      2040
    7. Meneeköhän sulla

      oikeasti pinnan alla yhtä huonosti kuin mulla? Tai yhtä huonosti mutta jollain eri tyylillä? Ei olisi pitänyt jättää sua
      Ikävä
      47
      2000
    8. Lähetä terveisesi kaipaamallesi henkilölle

      Vauva-palstalta tuttua kaipaamista uudessa ympäristössä. Kaipuu jatkukoon 💘
      Ikävä
      99
      1737
    9. Tekiskö nainen mieli tavata...

      Viikonloppuna ja...?
      Ikävä
      72
      1261
    10. PS uusimman gallupin rakettimainen nousija

      https://yle.fi/a/74-20170641 Aivan ylivoimaisesti suurin kannatuksen nousu PS:lle. Nousu on alkanut ja jatkuu 2 vuoden
      Maailman menoa
      154
      1108
    Aihe