Olkoon X = R². Määritä joukko int A, kun A = { (x, y) ∈ R² : xy ≥ 0, x ≥ 0, | y | < 1 }.
Sain tällaisen ratkaisun:
int A = { (x, y) ∈ R² : x > 0, 0 < y < 1 }
Miten tämä kannattaisi perustella (ilman kuvaan nojautumista)?
Lisäksi olisin kiitollinen, jos joku jaksaisi ilmaista täsmällisesti joukon ∂A.
Sisäpisteiden määrittäminen
6
148
Vastaukset
- Laskee,
Totea ensin että A = { (x, y) ∈ R² : x ≥ 0, 1 < y ≥ 0 }
ja perustele sitten miksi reunapisteet, joilla x=0 tai y=0 eivät ole sisäpisteitä.
Perustele vielä, miksi jokainen muu joukon A piste on sisäpiste.- Laskee,
Korjaan: piti olla
Totea ensin että A = { (x, y) ∈ R² : x ≥ 0, 1 > y ≥ 0 } - Topologiaa
Laskee, kirjoitti:
Korjaan: piti olla
Totea ensin että A = { (x, y) ∈ R² : x ≥ 0, 1 > y ≥ 0 }Mietinkin, että joukko A voitaisiin ilmaista helpommin.
Sain tällaista aikaan:
Olkoon p = (x, y) ∈ A, missä x ≠ 0 ja y ≠ 0.
Valitaan r = min { x, 1 - y, y }.
Tällöin B(p, r) ⊂ A.
Olkoon p = (0, y) ∈ A.
Tällöin mikä tahansa kuulaympäristö B(p, r) sisältää esim. pisteen (-½r, y) ∉ A.
Olkoon p = (x, 0) ∈ A.
Tällöin mikä tahansa kuulaympäristö B(p, r) sisältää esim. pisteen (x, -½r) ∉ A.
Pitäisikö vielä todeta/lisätä jotain? - BananaBoy69
"Totea ensin että A = { (x, y) ∈ R² : x ≥ 0, 1 > y ≥ 0 }"
Minusta x-akselin alapuolelle jäävä jana { (x, y)∈R²: x = 0, -1 < y < 0 } kuuluu myös joukkoon A.
∂A = { (x, y)∈R²: x = 0, -1 ≤ y ≤ 1 } ∪ { (x, y)∈R²: x ≥ 0, y = 0 } ∪ { (x, y)∈R²: x ≥ 0, y ≥ 1 }
Jana { (x, y) ∈ ℝ² | x = 0 ∧ −1 < y < 0 } todellakin kuuluu joukkoon A. Tämä ei vaikuta lopputulokseen eli A:n sisäpisteiden joukkoon, mutta pätevään päättelyyn (oikeaan vastaukseen) tarvitaan – jos muuten sovelletaan ehdotettua logiikkaa – tämän janan mainitseminen ja sen osoittaminen, että sen pisteet eivät ole sisäpisteitä.
WolframAlphakin toteaa, että joukon A ehto on ekvivalentti ehdon
(x = 0 ∧ −1 < y < 1) ∨ (x > 0 ∧ 0 ≤ y < 1)
kanssa (ehto kirjoitettu tässä loogisena lausekkeena, WolframAlpha ilmaisee asian ”ratkaisuina”, solutions).
http://www.wolframalpha.com/input/?i= xy ≥ 0, x ≥ 0, | y | < 1- tietäjä
"Jana { (x, y) ∈ ℝ² | x = 0 ∧ −1 < y < 0 }"
Tuo ei ole jana. Jana on nimittäin aina suljettu joukko, mutta tämä ei ole.
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Vedonlyöntiä .
Olen valmis lyömään ison vedon , että homma kaatuu . Jos kerta Sivonen ei lähde mukaan , niin ei tuoho usko kukaan muuka343474- 112808
Mikä on pahinta, mitä kaivatullesi
pelkäät tapahtuvan? Jos kuolemaa, vakavia sairauksia yms. ei lasketa?1032615Turvaan tulleet lähettävät omia lapsiaan vaaraan - hullua
MOT-ohjelman jakso ”Loma vaihtui kahleisiin” kertoi, kuinka Suomessa ja muualla Euroopassa asuvat somaliperheet lähettäv732577- 1242435
- 411418
Päivi Räsänen sai kutsun kongressiin todistajaksi.
Pystyykö Päivi pysymään totuudessa ja kertomaan kongressille, että raamattu ei ole lakikirja jota pitäisi noudattaa poli3931120Hei Antti. Minähän varoitin jo 2 v sitten, ettei sinusta tule pääministeriä, vaikka kuinka
voittaisit vaalit. Vasurit ovat aina puukottaneet toisiaan selkään, eivät koskaan edestäpäin. Marinistit varsinkin IL t61018Minkä kouluarvosanan (4-10) annat Thank God, sä tulit! sarjalle?
Katsoitko Thank God, sä tulit!? Uusi viihdeohjelma ei ollut kaikkien makuun, mutta jotkut tykkäsivät. Minkä kouluarvos501003Kaikkea hyvää kaikki
Kaikkea hyvää kaikki ja positiivisia ja hyviä asioita. Kylmää on kovia pakkasia. Pikku hiljaa kevättä kohti taas. Voimaa6850