Sisäpisteiden määrittäminen

Topologiaa

Olkoon X = R². Määritä joukko int A, kun A = { (x, y) ∈ R² : xy ≥ 0, x ≥ 0, | y | < 1 }.

Sain tällaisen ratkaisun:
int A = { (x, y) ∈ R² : x > 0, 0 < y < 1 }
Miten tämä kannattaisi perustella (ilman kuvaan nojautumista)?

Lisäksi olisin kiitollinen, jos joku jaksaisi ilmaista täsmällisesti joukon ∂A.

6

144

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Laskee,

      Totea ensin että A = { (x, y) ∈ R² : x ≥ 0, 1 < y ≥ 0 }
      ja perustele sitten miksi reunapisteet, joilla x=0 tai y=0 eivät ole sisäpisteitä.
      Perustele vielä, miksi jokainen muu joukon A piste on sisäpiste.

      • Laskee,

        Korjaan: piti olla
        Totea ensin että A = { (x, y) ∈ R² : x ≥ 0, 1 > y ≥ 0 }


      • Topologiaa
        Laskee, kirjoitti:

        Korjaan: piti olla
        Totea ensin että A = { (x, y) ∈ R² : x ≥ 0, 1 > y ≥ 0 }

        Mietinkin, että joukko A voitaisiin ilmaista helpommin.

        Sain tällaista aikaan:

        Olkoon p = (x, y) ∈ A, missä x ≠ 0 ja y ≠ 0.
        Valitaan r = min { x, 1 - y, y }.
        Tällöin B(p, r) ⊂ A.

        Olkoon p = (0, y) ∈ A.
        Tällöin mikä tahansa kuulaympäristö B(p, r) sisältää esim. pisteen (-½r, y) ∉ A.

        Olkoon p = (x, 0) ∈ A.
        Tällöin mikä tahansa kuulaympäristö B(p, r) sisältää esim. pisteen (x, -½r) ∉ A.

        Pitäisikö vielä todeta/lisätä jotain?


      • BananaBoy69

        "Totea ensin että A = { (x, y) ∈ R² : x ≥ 0, 1 > y ≥ 0 }"

        Minusta x-akselin alapuolelle jäävä jana { (x, y)∈R²: x = 0, -1 < y < 0 } kuuluu myös joukkoon A.

        ∂A = { (x, y)∈R²: x = 0, -1 ≤ y ≤ 1 } ∪ { (x, y)∈R²: x ≥ 0, y = 0 } ∪ { (x, y)∈R²: x ≥ 0, y ≥ 1 }


    • Jana { (x, y) ∈ ℝ² | x = 0 ∧ −1 < y < 0 } todellakin kuuluu joukkoon A. Tämä ei vaikuta lopputulokseen eli A:n sisäpisteiden joukkoon, mutta pätevään päättelyyn (oikeaan vastaukseen) tarvitaan – jos muuten sovelletaan ehdotettua logiikkaa – tämän janan mainitseminen ja sen osoittaminen, että sen pisteet eivät ole sisäpisteitä.

      WolframAlphakin toteaa, että joukon A ehto on ekvivalentti ehdon
      (x = 0 ∧ −1 < y < 1) ∨ (x > 0 ∧ 0 ≤ y < 1)
      kanssa (ehto kirjoitettu tässä loogisena lausekkeena, WolframAlpha ilmaisee asian ”ratkaisuina”, solutions).

      http://www.wolframalpha.com/input/?i= xy ≥ 0, x ≥ 0, | y | < 1

      • tietäjä

        "Jana { (x, y) ∈ ℝ² | x = 0 ∧ −1 < y < 0 }"

        Tuo ei ole jana. Jana on nimittäin aina suljettu joukko, mutta tämä ei ole.


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Me työeläkeläiset äänestämme SDP:tä

      SDP on luonut koko työeläkejärjestelmän, jonka hedelmistä saamme nyt nauttia. Kansaneläkelaitos on Maalaisliiton tekele,
      Maailman menoa
      179
      5046
    2. Eikö tunnukin kamalalta, kun en

      anna periksi vaikka parhaasi olet tehnyt antaaksesi täystyrmäyksen? Ja kyllähän minä monta iskua olen saanut ja maannut
      Ikävä
      81
      3626
    3. SDP on selvästi paras valinta äänestyskopissa

      Puolueella on arvomaailma kohdallaan, sillä on hyvä CV itsenäisen Suomen historiassa vastuunkantajana ja hyvinvointivalt
      Maailman menoa
      40
      2628
    4. SDP:n selitykset ontuu pahasti - "On käsitelty heti, mutta kukaan ei tiedä"

      Kokoomuslaiset pistää taas demareita nippuun. Tuppuraisen mukaan mukaan SDP:n useat ahdistelutapaukset on käsitelty het
      Maailman menoa
      41
      2286
    5. Kenen juontajan pitäisi voittaa tänään Kultainen Venla? Ehdolla Pimiä, Holma ja Vaaherkumpu

      Kultainen Venla gaalassa jaetaan tänään tv-alan palkintoja. Yksi suosituimmista kategorioista on Juontaja. Vappu Pimiä
      Suomalaiset julkkikset
      99
      2198
    6. Oletko nainen turhautunut, kun en tule juttelemaan siellä?

      Haluaisin tottakai tulla. Älä käsitä väärin. Ehkä ensi kerralla?
      Ikävä
      29
      2077
    7. Antti Lindtman: "Ainahan kaikenlaisia huhuja liikkuu"

      Näin hän siis vastaa SDP:n häirintäkohuun, väistelee vastuutaan Juttuhan on niin, että Lindtman ja Tuppurainen on tasan
      Maailman menoa
      73
      2074
    8. Mitä saa sanoa?

      Palstalla tänään sanottua: ” Kaikki riippuu siitä, miten asian esittää,” Onko siis niin, että saa muita pomottaa ja
      80 plus
      88
      2023
    9. Onko olemassa miehiä, jotka haluavat yhteydenpitoa?

      Silloin tällöin viestiä, puntarointeja arkielämästä, ikäänkuin pientä viihdettä ilman sen kummallisempaa. Tällaista miet
      Sinkut
      21
      1546
    10. Mitä Trump itse pitäisi siitä, jos häntä solvattaisiin

      Kuten hän solvasi muita mm. Macronia? Kyllä ei huumori enää kukkisi. White house on nykyään pelkkä vitsi vain, ei mitään
      Maailman menoa
      114
      1458
    Aihe