[URL=http://s1323.photobucket.com/user/kekker00si/media/TEHTV1_zps8eea3746.png.html][IMG]http://i1323.photobucket.com/albums/u592/kekker00si/TEHTV1_zps8eea3746.png[/IMG][/URL]
Ja r=100m, miten ihmeessä ratkaistaan, saan pinta-alat ylä ja alapuolelta, mutta siihen loppuu älli.
Tien tilavuus
10
309
Vastaukset
- Oriveteltä pohjoisee
en ymmärrä mitä muuta se voisi olla kuin poikkipinnan ala * 1 m
- aeija
Kirjoitin tuon hätäisesti viime yönä, ja olen sitä nyt tänään ihan oikeesti laskenut, se lasku ei ihan parille paperille mahdukaan. Noin minä sen kuitenkin laskin:
http://aijaa.com/qgCPwY - aeija
aeija kirjoitti:
Kirjoitin tuon hätäisesti viime yönä, ja olen sitä nyt tänään ihan oikeesti laskenut, se lasku ei ihan parille paperille mahdukaan. Noin minä sen kuitenkin laskin:
http://aijaa.com/qgCPwYsekin selvisi, että sisärinkulan laskennallisena säteenä pitää käyttää (R-4)-3,3333, ja ulkorinkulan (R 4) 3,3333. (kolmion painopiste)
Jos se R=100, niin sisärinkulan V=2*PI*92,666*½*10*2,5=2*PI*1158,3333
keskirinkula: V=2*Pi*2000
ulkorinkula: V=2*PI*107,333333*½*10*2,5=2*PI*1341,6666 aeija kirjoitti:
Kirjoitin tuon hätäisesti viime yönä, ja olen sitä nyt tänään ihan oikeesti laskenut, se lasku ei ihan parille paperille mahdukaan. Noin minä sen kuitenkin laskin:
http://aijaa.com/qgCPwYPieni ajattelu ennen "roiskimista" helpottaa kummasti laskentaa.
Jos välttämättä haluat laskea integroimalla osat erikseen mielivaltaisella r-arvolla, kannattaa valita kulma valmiiksi suuruudeltaan 1/r, jolloin riittää integrointi vain r.n suuntaan.
Tietenkin vielä helpompaa on oivaltaa että sama tilavuus, joka sisäreunalla kutistuu, laajenee ulkoreunalla yhtä paljon ja tilavuus on poikkipinta-ala * pinnan painopisteen kulkema matka.
Vrt -pyörähdyskappaleiden tilavuus ja toteat "Oriveteltä pohjoisee".n antaneen jo oikean vastauksen.- aeija
e.d.k kirjoitti:
Pieni ajattelu ennen "roiskimista" helpottaa kummasti laskentaa.
Jos välttämättä haluat laskea integroimalla osat erikseen mielivaltaisella r-arvolla, kannattaa valita kulma valmiiksi suuruudeltaan 1/r, jolloin riittää integrointi vain r.n suuntaan.
Tietenkin vielä helpompaa on oivaltaa että sama tilavuus, joka sisäreunalla kutistuu, laajenee ulkoreunalla yhtä paljon ja tilavuus on poikkipinta-ala * pinnan painopisteen kulkema matka.
Vrt -pyörähdyskappaleiden tilavuus ja toteat "Oriveteltä pohjoisee".n antaneen jo oikean vastauksen.Donitsin tai toruksen tilavuuden laskemisesta löytyy erilaisia tekniikoita ja esimerkkejä vaikka kuinka paljon kirjoista ja netistä, mutta profiililtaan erilaisesta kuprusta kuin ympyrä ei, vaikka tällainen suoraviivainen profiili on helpompikin.
Halusin nimenomaan laskea tämän sylinterikoordinaatistossa ja koko rinkulan, ja opetella sen vielä niin, että tilavuudenlasku onnistuu sitten vastaisuudessa vaikka minkälaiseen suoraviivaisiin poikkileikkaukseen, siis ei symmetrisiinkin.
Tottakai minä nuo kaikki painopisteisiin sijoitettavat laskennalliset säteet , 1/r kulman ja donitsin tilavuuden poikkipinnan ala * kehänpituus tiesin ennakolta, mutta kun tavoite oli laskea se noin.
Olen tätä kyllä monella muullakin tavalla laskenut, mutta minusta tämä on selvin. - Miten vaan
aeija kirjoitti:
Donitsin tai toruksen tilavuuden laskemisesta löytyy erilaisia tekniikoita ja esimerkkejä vaikka kuinka paljon kirjoista ja netistä, mutta profiililtaan erilaisesta kuprusta kuin ympyrä ei, vaikka tällainen suoraviivainen profiili on helpompikin.
Halusin nimenomaan laskea tämän sylinterikoordinaatistossa ja koko rinkulan, ja opetella sen vielä niin, että tilavuudenlasku onnistuu sitten vastaisuudessa vaikka minkälaiseen suoraviivaisiin poikkileikkaukseen, siis ei symmetrisiinkin.
Tottakai minä nuo kaikki painopisteisiin sijoitettavat laskennalliset säteet , 1/r kulman ja donitsin tilavuuden poikkipinnan ala * kehänpituus tiesin ennakolta, mutta kun tavoite oli laskea se noin.
Olen tätä kyllä monella muullakin tavalla laskenut, mutta minusta tämä on selvin.Halusit siis todistaa, että pyörähdyskappaleen tilavuus on poikkipimman painopisteen matka * pinta-ala.
Se pätee kaikille poikkioinnoille ja todistukseen olisi otettava mielivaltainen poikkileikkaus.
Luulisin että asiasta löytyy runsaasti esimerkkejä, ainakin se kuulunee aikaisessa vaiheessa opetettaviin perussovelmiin. - aeija
Miten vaan kirjoitti:
Halusit siis todistaa, että pyörähdyskappaleen tilavuus on poikkipimman painopisteen matka * pinta-ala.
Se pätee kaikille poikkioinnoille ja todistukseen olisi otettava mielivaltainen poikkileikkaus.
Luulisin että asiasta löytyy runsaasti esimerkkejä, ainakin se kuulunee aikaisessa vaiheessa opetettaviin perussovelmiin.En halunnut, vaan juuri päinvastoin. Halusin laskea tämän vetoamatta siihen.
Laitoin sen tohon perään vaan alkuperäiselle kysyjälle, jotta saa laskettua sisimmän tai uloimman pengerryksen tilavuudet.
Olisi sen kysytyn tilavuuden metriä kohden voinut laskea näinkin:
http://aijaa.com/60C0Yt
Mutta käytin sylinterikoordinaatistoa ja triplaintegraalia.
(Minä en ole muuten mikään opiskelija, enkä ole käynyt muuta kuin lukion ja opettelen näitä yhdestä kirjasta minkä löysin kirpputorilta , ja netistä, aina sitä mukaa kun joku kysyy. Ammatiltani olen CNC-koneistaja.) - 13+7
aeija kirjoitti:
En halunnut, vaan juuri päinvastoin. Halusin laskea tämän vetoamatta siihen.
Laitoin sen tohon perään vaan alkuperäiselle kysyjälle, jotta saa laskettua sisimmän tai uloimman pengerryksen tilavuudet.
Olisi sen kysytyn tilavuuden metriä kohden voinut laskea näinkin:
http://aijaa.com/60C0Yt
Mutta käytin sylinterikoordinaatistoa ja triplaintegraalia.
(Minä en ole muuten mikään opiskelija, enkä ole käynyt muuta kuin lukion ja opettelen näitä yhdestä kirjasta minkä löysin kirpputorilta , ja netistä, aina sitä mukaa kun joku kysyy. Ammatiltani olen CNC-koneistaja.)"Olisi sen kysytyn tilavuuden metriä kohden voinut laskea näinkin"
Huvittavasti sanottu, koska tuota aloittaja juuri kysyi, ja vastaus tuli ikään kuin vahingossa kaiken muun potaskan jatkeeksi. - aeija
13+7 kirjoitti:
"Olisi sen kysytyn tilavuuden metriä kohden voinut laskea näinkin"
Huvittavasti sanottu, koska tuota aloittaja juuri kysyi, ja vastaus tuli ikään kuin vahingossa kaiken muun potaskan jatkeeksi.Tässä on vielä yksi tapa, saattaa olla selvinkin
http://aijaa.com/YNf8xI
- näinkö se menee
en keksi helppoa ratkaisua, mutta yksi tapa mielestäni on laskea kokonaisen ympyrän tekevän tien tilavuus ja sitten ottaa tästä tuon metrin mitan vaatima osuus.
Sormuksen muotoisen esineen tilavuuden voi laskea kun ensin laskee ulkomitan mukaan lasketun kiekon tilavuuden, ja siitä sitten leikataan sormuksen sisäsivuun asti ulottuva kiekon keskiosan tilavuus pois.
Nuo viistosti leikatut osat ovat sitten vain puolikkaita näistä tilavuuksista. Tien muodon takia tilavuus on laskettava kolmessa osassa, molemmille pientareille omat tilavuudet ja suoraan ajoradan alla olevalle suorakulmiolle omansa.
Lopulta kun koko ympyrän muotoisen tien tilavuus on tiedossa, niin sitten r:n avulla lasketaan kuinka suuri osuus tuo 1m on koko ympyrän ympärysmitasta (tien keskiviivan kohdalta mitattuna), ja massa jaetaan samassa suhteessa.
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
- 841662
Nainen, huomasitko kun muutin sinua?
Niin lyhyessä ajassa niin paljon. Mutta jotain muuttui minussakin. :/88898- 8862
- 54852
IS Viikonloppu 12.-13.7.2025
Viikonlopun ratoksi Skyttä ja Kärkkäinen ovat taiteilleet 3.0 arvoisen ristisanatehtävän ratkottavaksi. Kenenkään ratko56849Tämä kesä ei ollut vielä meidän
Olisihan se ihana viettää kesäiltoja kanssasi ulkona. Ei kai ollut vielä oikea aika. Ehkä kohtaamme vielä sattumalta jos58793Poliisi losautti puukkohemmon hengiltä
Mitäs läks, heilumaan puukon kanssa eikä totellut käskytystä. https://www.is.fi/kotimaa/art-2000011361763.html189779Mitä jos vaan tapaisit sen jota mietit
Jos se yksi henkilö on sinun mielessäsi niin entäs jos vaan menisit tapaamaan sitä, heti, samantien, miettimättä mitään.80735Teet tämän niin
Helpoksi, mutta silti niin vaikeaksi. Vihaan omaa saamattomuuttani, vaikka kaikki olisi saatavilla. 🩷🌸41730Sofiaa ei kelpuutettu Martinan kaveriporukkaan
Ibizalla lomailee Martinan kanssa ihan muut naiset.172720