Vanha yo-tehtävä

exabina

Pisteen(1,2) kulkee käyrä y=f(x), jonka mielivaltaiseen pisteeseen (x,f(x)) piirretty normaali leikkaa x-akselin pisteessä (x/3 , 0). Määritä käyrän yhtälö.

30

367

Äänestä

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • NiinTaiNäinTaiToisinPäin

      Taitaa tulla ellipsi: y*y' = -2*x/3

      • exabina

        Siis pyydettiin käyrän yhtälöä y=f(x), joka kulkee pisteen (1,2) kautta. Ratkaistussa muodossa.


      • NiinTaiNäinTaiToisinPäin

        Kyllä sun pitäisi tuon välikaavan avulla pystyä itsekin ratkomaan.


    • difflex

      3yy'=-2x => y = SQRT(2/3*(7-x^2)) ?

      • Ellipsimuoto

        Tai muodossa 2*x^2 3*y^2 = 14


      • aeija

        Tuo juuri on nimenomaan oikea vastaus


    • NiinTaiNäinTaiToisinPäin

      Tuo tehtävänasettelu on vähän epämääräinen, koska siinä puhutaan ensijaisesti käyrästä, eikä funktiosta. Funktio olisi kaksikäsitteinen ja vain x-akselin yläpuolinen osa siitä kelpaisi vastaukseksi ( neliöjuuri). Mutta kun puhutaan käyrästä, voisi tulkita myös koko ellipsiksi, sillä normaaliehto pätee myös alapuoliselle osalle.

      • diffkex

        "Pisteen(1,2) kulkee käyrä y=f(x)"
        Eikö tämä indikoi, että että käyrä on esitettävissä funktion kuvaajana?


      • aeija

        Minulla on se käsitys, että käyrä on ellipsin yläpuoleinen osa, joka on päistä avoin, eli lähestyy päistä pisteitä(sqrt7,0) ja(-sqrt7,0). Noissa pisteissä ei voi sellaista normaalia asettaa kuin tässä pyydetään, joten sen pisteen (2,1) vuoksi yläpuolinen osa ellipsistä.


      • aeija
        aeija kirjoitti:

        Minulla on se käsitys, että käyrä on ellipsin yläpuoleinen osa, joka on päistä avoin, eli lähestyy päistä pisteitä(sqrt7,0) ja(-sqrt7,0). Noissa pisteissä ei voi sellaista normaalia asettaa kuin tässä pyydetään, joten sen pisteen (2,1) vuoksi yläpuolinen osa ellipsistä.

        pisteen (1,2) vuoksi


      • NiinTaiNäinVaiToisinPäin

        No otetaan toinen samantyyppinen tehtävä: Millä käyrällä on vakioetäisyys origosta ja se kulkee pisteen (1,1) kautta. Onko se x-akselin yläpuolinen osa ympyrästä, jonka kp on origossa ja säde sqrt2?


      • difflex
        NiinTaiNäinVaiToisinPäin kirjoitti:

        No otetaan toinen samantyyppinen tehtävä: Millä käyrällä on vakioetäisyys origosta ja se kulkee pisteen (1,1) kautta. Onko se x-akselin yläpuolinen osa ympyrästä, jonka kp on origossa ja säde sqrt2?

        Tässä samantyyppisessä ei edellytetä käyrää funktion kuvaajaksi, joten täysi ympyrä kelpaa.


      • NiinTaiNäinVaiToisinPäin

        Avausviestissä puhutaan käyrästä ja käyrän yhtälöstä. Entä jos olisi kysytty: "Määritä käyrän yhtälö", kuten avausviestissä?
        Hieman epäilen onko yo-tehtävä formuloitu noin epämääräisesti.


      • aeija

      • aeija
        aeija kirjoitti:

        pisteen (1,2) vuoksi

        Minusta tässä on nyt tehtävä poliittinen päätös leikkaako x-akseli x-akselin kohdassa x/3 vai ei. Siitähän on kysymys, koska ellipsille pisteeseen
        ( sqrt7, 0) piirretty normaali on x-akseli.
        Jos x-akseli leikkaa x-akselin kohdssa x/3, niin silloin koko ellipsi käy, muuten ellipsi katkeaa sillä kohdalla.
        Jos x-akseli ei leikkaa x-akselia kohdassa x/3, niin käyrä on ellipsin yläpuoleinen kaari.
        (Minusta ei oikein vaikuta siltä, että x-akseli leikkaisi x-akselin missään kohdassa.
        Minähän tämän tehtävän laitoin tänne alunpitäen, koska halusin saada juuri tästä mielipiteitä, mutta ei se ketään innostanut)


      • NiinTaiNäinTaiToisinPäin

        Itse olisin muotoillut esim. seuraavasti: Määritä funktio f(x) jolle pätee: a) f(1)=2 ja b) funktion kuvaajan mielivaltaiseen pisteeseen (x,f(x)) piirretty normaali leikkaa x-akselin pisteessä (x/3 , 0). Silloin ei olisi ollut tulkinnanvarainen.


      • NiinTaiNäinTaiToisinPäin
        aeija kirjoitti:

        Minusta tässä on nyt tehtävä poliittinen päätös leikkaako x-akseli x-akselin kohdassa x/3 vai ei. Siitähän on kysymys, koska ellipsille pisteeseen
        ( sqrt7, 0) piirretty normaali on x-akseli.
        Jos x-akseli leikkaa x-akselin kohdssa x/3, niin silloin koko ellipsi käy, muuten ellipsi katkeaa sillä kohdalla.
        Jos x-akseli ei leikkaa x-akselia kohdassa x/3, niin käyrä on ellipsin yläpuoleinen kaari.
        (Minusta ei oikein vaikuta siltä, että x-akseli leikkaisi x-akselin missään kohdassa.
        Minähän tämän tehtävän laitoin tänne alunpitäen, koska halusin saada juuri tästä mielipiteitä, mutta ei se ketään innostanut)

        Kuvittelisin että leikkaavilla suorilla on vain yksi yhteinen piste joten siten kyseessä ei ole leikkaamisesta. Toisaalta normaali kulkee (myös) tuon pisteen (x/3, 0) kautta.
        Mutta sitten on tuo kysymys mitä tarkoitetaan käyrällä ja sitä vastaavalla yhtälöllä. Tekeekö "epäjatkuvuus" sen että kyseessä on kaksi eri käyrää, tässä tapauksessa kaksi ellipsin puoliskoa. Entä jos kysytään vaikkapa yhtälöä käyrälle joka on lnx derivaatta ja kulkee pisteen (1,1) kautta, kelpaako vain 1/x kun x>0?
        Kyseessä oli viimeinen tehtävä, ehkä siinä edellytettiin monipuolista tarkastelua.


    • aeija

      Tuo on varmaankin helpoin ratkaista kulmakertoimilla, mutta ratkaisin sen myös lähtien käyrän parametriesityksestä: x=a*cos(t), y=b*sin(t).
      Kuinkas se menee ?

      • aeija

      • Ohman
        aeija kirjoitti:

        noin kai se menee: http://aijaa.com/wbtLnx

        Sinä kirjoitat aluksi

        x = a cos(t) ja y = b sin(t).

        Nyt x^2/a^2 y^2/b^2 = 1 eli sinä olet jo päättänyt, että kyseessä on ellipsi, jonka akselien puolikkaat ovat a ja b.Mutta eihän tätä vielä tiedetä.

        Eikö pitäisi kirjoittaa x(t) = r(t) cos(t) ja y(t) = r(t) sin(t) ?

        Vai enkö ymmärtänyt tarkoitustasi?


      • aeija

        Pitää paikkansa, että käyrä tiedettiin tuossa vaiheessa ellipsin kaareksi, kyse oli vain siitä että minkä ellipsin kaari.

        Tässä voidaan kyllä arvatakin käyrän olevan ehkä ellipsi koska sanotaan, että käyrän mielivaltaiseen pisteeseen asetetaan normaali, joka leikkaa x-akselin, ja lähteä sillä yritteellä. Ei se mitenkään väärin olisi, mutta tässä siis tiedettiin se ellipsin kaareksi, avoimessa välissä. Ellipsihän se ei siis ole.


      • Ohman
        aeija kirjoitti:

        Pitää paikkansa, että käyrä tiedettiin tuossa vaiheessa ellipsin kaareksi, kyse oli vain siitä että minkä ellipsin kaari.

        Tässä voidaan kyllä arvatakin käyrän olevan ehkä ellipsi koska sanotaan, että käyrän mielivaltaiseen pisteeseen asetetaan normaali, joka leikkaa x-akselin, ja lähteä sillä yritteellä. Ei se mitenkään väärin olisi, mutta tässä siis tiedettiin se ellipsin kaareksi, avoimessa välissä. Ellipsihän se ei siis ole.

        Ok. Ymmärsin väärin. Luulin, että ratkaisit tehtävää tuolla tavalla.

        Ohman


    • diffklex

      >"Hieman epäilen onko yo-tehtävä formuloitu noin epämääräisesti."

      Vaativimmissa tehtävissä saattaa olla näitä pikku ansoja sille viimaiselle pisteelle. En tiedä miten tämä on kokeissa arvosteltu. Täydellinen ratkaisu vaatii implisiittisten oletusten toteamista. Tässä siis jotenkin, että: Olettaen, että tehtävänannossa kohdassa "Pisteen(1,2) kulkee käyrä y=f(x)" f(x) viittaa funktioon, käyrä on esitettävissä funktion R->R kuvaajana, jolloin ellipsin alaosa ei kelpaa.
      Näin perustellen pisteitä ei ainakaan voi vähentää, mutta perustelun pois jättämisestä voidaan sakottaa.

      • aeija

        Malliratkaisussa(tilasin kirjastosta) tämä on klaarattu näin:

        Oletetaan, että käyrä y=f(x) toteuttaa annetut ehdot. Silloin funktio f välttämättä toteuttaa seuraavat ehdot:

        1. f on derivoituva eräällä avoimella välillä, joka sisältää pisteen x=1
        2. f(1)=2
        3. jokaisella välillä vektori (2/3xi f(x)j)▪(i f`(x)j)=0, josta tulee

        f(x)^2=-2/3x^2 14/3, josta on 2. ehdon perustella valittava positiivinen juuri.

        Sitten todetaan, että lauseke f(x)= sqrt(-2/3x^2 14/3) välillä ]-sqrt7,sqrt7[
        määrittelee ehdot 1.-3. Käyrä y=f(x) toteuttaa silloin tehtävän ehdot.

        Tuo derivoituvuus tuntuu tässä olevan tärkeä , vaikka se täytyykin lukea vähän rivien välistä. Pitää siis olla derivoituva kun kerran laskussa derivaattaa käytetään, joten on oltava avoin väli. Samoin on käytettävä pistetuloa, eikä normaalin kulmakerrointa, koska siinäkin voi tulla, ja tuleekin normaali, jolla ei ole kulmakerrointa jossakin pisteessä.
        Tuo i f`(x)j on käyrän y=f(x) tangenttivektori, joka saadaan derivoimalla vektori käyrälle, joka vektori on r=xi f(x)j

        (Pistetulosta tulee: 2/3x f(x)*f`(x)=0=>2*f(x)*f`(x)=-4/3x, josta integroimalla:

        f(x)^2=-2/3x^2 C, ja f(1)=2 =>C=14/3)


    • aeija

      Tällä näppäimistöllä tai koneella jää aina bittiavauuteen pois näitä merkkejä, tuostakin plussat:
      Malliratkaisussa(tilasin kirjastosta) tämä on klaarattu näin:

      Oletetaan, että käyrä y=f(x) toteuttaa annetut ehdot. Silloin funktio f välttämättä toteuttaa seuraavat ehdot:

      1. f on derivoituva eräällä avoimella välillä, joka sisältää pisteen x=1
      2. f(1)=2
      3. jokaisella välillä vektori (2/3xi f(x)j)▪(i f`(x)j)=0, josta tulee

      f(x)^2=-2/3x^2 14/3, josta on 2. ehdon perustella valittava positiivinen juuri.

      Sitten todetaan, että lauseke f(x)= sqrt(-2/3x^2 14/3) välillä ]-sqrt7,sqrt7[
      määrittelee ehdot 1.-3. Käyrä y=f(x) toteuttaa silloin tehtävän ehdot.

      Tuo derivoituvuus tuntuu tässä olevan tärkeä , vaikka se täytyykin lukea vähän rivien välistä. Pitää siis olla derivoituva kun kerran laskussa derivaattaa käytetään, joten on oltava avoin väli. Samoin on käytettävä pistetuloa, eikä normaalin kulmakerrointa, koska siinäkin voi tulla, ja tuleekin normaali, jolla ei ole kulmakerrointa jossakin pisteessä.
      Tuo i f`(x)j on käyrän y=f(x) tangenttivektori, joka saadaan derivoimalla vektori käyrälle, joka vektori on r=xi f(x)j

      (Pistetulosta tulee: 2/3x f(x)*f`(x)=0=>2*f(x)*f`(x)=-4/3x, josta integroimalla:

      f(x)^2=-2/3x^2 C, ja f(1)=2 =>C=14/3)

      onnistuukohan nytkään, siis kaikki merkit hukku ...

      • aeija

        ei voi mitään, plus merkit ei vaan näy, täytyy lopettaa tällä vehkeellä. Joku voisi ehkä ne lisätä ja tehdä tämän uusiksi, niin jäisi jälkipolville oikein


      • aeija

        Voinhan sen itsekin laittaa, tästä ei tosin kukaan saa selvää ja tämä' sotkukin häipyy jonkin ajan päästä http://aijaa.com/pyNujO


    • Ohman

      Käyrän yhtälö,parametrinä x,on R(x) = x i f(x) j. Sen eräs tangenttivektori on

      R'(x) = i f'(x) j ja täytyy olla ( (R(x) - x/3 i),(i f'(x) j)) = 0 josta saadaan
      ((2/3 x i f(x) j), (i f'(x) j)) = 0 ja lopulta 2/3 x f(x) f'(x) = 0.

      Siis d/dx(1/2 (f(x))^2) = - d/dx(x^2/3) ja

      f(x)^2 = - 2x^2/3 C ja koska f(1) = 2 on C = 4 2/3 = 14/3.

      Tässä voi nyt sitten viisastella mikä tuo käyrä on. Ellipsin yhtälö siitä kuitenkin tulee.

      x^2/(sqrt(7))^2 y^2/(sqrt(14/3))^2 = 1.

      Tämä kulkee annetun pisteen kautta ja sen normaali täyttää annetun ehdon paitsi pisteissä (- sqrt(7) , 0) ja (sqrt(7),0). Mutta huomattakoon että kun otetaan tuon leikkauspisteen ja käyrän pisteen välisen janan projektiox-akselille niin sen pituus lähenee arvoa 2/3 sqrt(7) kun x lähenee näitä pisteitä eli tässä mielessä "leikkauspiste" on olemassa."Leikkauspisteen" x-koordinaatti lähenee arvoja /- sqrt(7)/3.

      Ohman

    • Ohman

      Jättipä minunkin jutustani plus-merkit pois. Voihan saatana!

      Käyrä on siis x i plus f(x) j ja tangentti i plus f'(x) j. JNE.

      Ja popussa "lähenee arvoja plus/miinus sqrt(7)/3.

      Ohman

      • Ohman

        Eipäs kun "lopussa ...".

        Ohman


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Oletko varattu minulle?

      Mieheltä kysyn.
      Ikävä
      304
      11676
    2. Mitä ensi viikolla tapahtuu?

      Mitä toivot, että ensi viikolla tapahtuu?
      Ikävä
      144
      7146
    3. Mitä Ajattelit Kun Näit Kaivattusi

      Ensimmäistä Kertaa?
      Ikävä
      104
      5962
    4. Vanhempi mies

      Jos yritän ajatella sinut pois sydämestäni, ikävä ja surullinen kaipuu tulee kaksin verroin kovempana. Olit mun unessa
      Ikävä
      42
      5319
    5. Noloa että kaipasin sinua

      Toivottavasti et tunnistanut itseäsi. Ikävissään sitä on aika typerä.
      Ikävä
      53
      4399
    6. Minne sä aina välillä joudut

      Kun pitää hakemalla hakea sut sieltä ja sitten oot hetken aikaa esillä kunnes taas menet piiloon, en ymmärrä 🤔❤️ Oot ta
      Ikävä
      30
      4299
    7. On niin vaikea olla lähelläsi

      En saa ottaa kädestäsi kiinni, en saa halata. En saa silittää hiuksiasi. Enkä saa sinua koskaan omakseni. ☔ Miehelle na
      Ikävä
      32
      3621
    8. On niin paha olla

      Tarviin jotain jolla turruttaa... Kuka voi auttaa.
      Ikävä
      62
      3618
    9. Pehmeää laskua

      Sinulle. Muutaman kilsan päästä. Mieheltä, joka salaa välittää.
      Ikävä
      83
      3238
    10. Nyt peukut pystyyn

      Nyt kaikki peukut pystyyn, siirtopersu on aikeissa muuttaa Kannuksesta pois. Facebookissa haukkui tänään Kannuksen peru
      Kannus
      22
      3145
    Aihe