Pythagoras ja skalaaritulo

Robotski

Kahden vektorin kertolaskua, tai tuloa pikemminkin, nimitetään skalaarituloksi. Se on nolla, jos vektorit ovat 90 asteen kulmassa toisiinsa verrattuna.

Pythagoraan lausekkeen mukaan hypotenuusa toiseen on kateettien neliöiden summa.
Menikö oikein tähän asti?

Sitten seuraa kysymys. Tunteeko kukaan matematiikan historiaa niin tarkkaan, että voisi ottaa kantaa: muodostiko Pythagoras lausekkeensa nimenomaan skalaaritulon kautta?

Eikö kolmion sivuja voi ajatella vektoreiksi, ja saadaan algebrallisesti laskien (a b)^2 lausekkeen kautta mm. skalaaritulo 2ab, joka osoittautuu nollaksi, ja sitten jää a^2 b^2. Tälläkö tavalla Pythagoras muodosti kaavansa, vai miten? Empiirisesti mittausten perusteellako - piirtelemällä suorakulmaisia kolmioita, ja päättelemällä sitten mittaustuloksista yleistyksen, että hypotenuusa on aina tietyn mittainen suhteessa kateetteihin?

https://fi.wikipedia.org/wiki/Pythagoraan_lause
https://fi.wikipedia.org/wiki/Pistetulo
http://matwww.ee.tut.fi/jkkm/vektorit/vekto07.htm
https://peda.net/sievi/sievin-lukio/oppiaineet2/mp/4vektorit/tkapp/luku-3-2:file/download/dd1681b01956b91d8724e44c34847fc1db55c4dc/Vektorit_MAA5_LUKU3.2.pdf

9

219

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • KVäisälä.vaan

      Ei ole pakko ajatella sinne päinkään, mitä kysyt vaan tavallista perusgeometriaa vaan:
      Pythagoraan lauseen yksi perinteinen todistus:
      Olkoon suorakulmainen kolmio sivut a,b, hypotenuusa c. Piirretään hypotenuusaa kohti korkeusjana, joka jakaa c:n osiin p ja q niin että c=p q.
      Yhdenmuotoisista kolmioista suhteet c:a=a:p ja c:b=b:q, josta a^2=cp,b^2=cq, joten
      a^2 b^2=cp cq=c(p q)=c^2

      Eli pelkällä geometrialla on pärjätty, periaatteessa vaikka läpi historian; Juutuubista löytyy leikkaa/liimaa juttuja ja kai ne virallisestakin todistuksesta käy kun vaan tekee ne ns.hyvässä järjestyksessä ;)

      Vektorit tuli käsittääkseni koulukirjoihin niihin aikoihin, kun joukko-oppi muoti-ilmiönä peruskoulukokeiluissa meni kiville. Vektorit on formaatti, mitä ilman - taas periaatteessa - koulujutuissa tulisi aivan hyvin laskennoissa toimeen, ne on vaan käytännöllisiä sitten kun pitää laskea ennen käsin tai nyt koneellisesti ohjelmoituna paljon, kuten esim.fysiikassa virtausjuttuja ja sellaisia.
      Vektorit -otsikon alla on eri legopalikoita, esim.pistetulo, eristetty palikoiksi ihan vaan sillä, että sama muodollinen kuvio käytännössä toistuu niin usein, aluksi ei taideta koulukirjoissa sanoakaan, mitä mikin palikka irrallisena havaintomielessä merkkaisi. Joku matemaatikko saattaisi nähdä niissä operaattorin luonnetta siihen suuntaan kuin esim. -merkki tekee summan.

      On vektoreilla matikkahistoriassa pitemmätkin juuret, tietty
      mutta ei Pythagoras liene elementtirakentamisesta kovin perustanut, vaan siihen aikaan tiili tiileltä improvisointi ja viivotin/harppi kuviointi perusteiksi on tuntunut luontaisemmalta.
      Siinäpä vapaata proosaa, joku tietävämpi laittanee linkkejä, jos matematiikan historia kiinnostaa.

    • Robotski

      Itselläni on käsityksiä, että
      - Pythagoraan lausekkeen todistamiseen on runsaasti erilaisia keinoja, mutta
      - ehkä juuri siksi on vaikeaa jälkiviisastella, pääsikö Pythagoras johtopäätökseensä juuri tällä tai jollain muulla tavalla. Ehkä useammalla?

      Näissa väitetään, ettei lauseke ollut Pythagoraan itse keksimää alun perin ollenkaan:
      http://www.opettajah.fi/2016/01/25/pythagoraan-luvut/
      https://matta.hut.fi/matta2/isom/html/pythagor3.html

      On myös Pythagoraan lukuja. Kokonaislukuja, jotka sopivat Pythagoraan lausekkeeseen. Esim. 3^2 4^2 =5^2. Olisiko hyödyllistä tätä asiaa tutkia pidemmälle; missä tällaista tietoa kokonaisluvuista voisi hyödyntää?

      Aiheesta muita linkkejä:
      https://opetus.tv/mab/mab2/pythagoraan-lause/
      https://matematiikkalehtisolmu.fi/2009/kontra_h.pdf

      • Kanootti3

        Yksi käytännönsovellus noille Pythagoraan tripleteille esim. (3,4,5) on että niillä on helppo tehdä suorakulma. Esim, jos tekee narulenkkiin kaksitoista solmua tasavälein, niin kun sen muotoilee kolmioksi, jossa on sivuilla 3, 4 ja 5 solmunväliä, siihen tulee automaattisesti suora kulma. Tämä johtuu siitä, että Pythagoraan lause toimii myös toiseen suuntaan: jos sivut toteuttavat a^2 b^2=c^2, niin kolmio on suorakulmainen.


    • matematiiikko
    • Pythagoras oli aikansa todellinen nero!
      Luulen kuitenkin, että P:n kantavaa lausetta johti pari oivallusta suorakulmaisista kolmioista, ei niinkään vektorialgebra.

      • Esimerkiksi. Jos Ympyrän sisään piirretään kolmio, jonka yksi sivu on 23, toinen 88 ja kolmas 69 astetta, niin mikä on kolmion leikkaaman suurimman palan pinta-alan (sekantin ja kaaren) suhde pienimpään (sekanttiin ja kaareen).

        Osaako joku täällä ratkaista asian ilman analyysia, siis pelkästään geometrisin perustein, kuten Pythagoras?


    • Robotski

      En pidä mahdottomana, etteikö jossain muinaisessa kulttuurissa olisi voitu käyttää esim. vektorilaskentaa, mutta sitten tiedon kadota kulttuuriperinnöstä pois joksikin aikaa, jostain syystä (sodat, nälänhädät, luonnonmullistukset, epidemiat), ja sitten on voitu keksiä samaa uudelleen. Olihan joskus jotain kulttuuria muinaisilla egyptiläisillä, inkoilla, intialaisilla, jne. Kyseenalaista, onko kaikkia muinaisia keksintöjä voitu jäljittää ja dokumentoida jälkikäteen.
      Muinaisilla kreikkalaisilla oli mm. tapa ajatella kuin luvut olisivat etäisyyksiä. Muistuttaa vektoreilla laskemista.

    • Kanootti3
      • Robotski

        Kiitoksia linkistä. Mielenkiintoisia todistuksia.
        Yllättävältä tuntui myös tuo suorakulmaisen särmiön kaava a^2 b^2 c^2 = d^2.
        Mutta tottakai asia on ihan järkeenkäypä. En vain ollut ajatellut aiemmin juuri tuota asiaa.
        Erikoista myös tuo, että Pythagoraan lausetta voisi soveltaa muihinkin pinta-aloihin kuin neliöihin.


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Suureksi onneksesi on myönnettävä

      Että olen nyt sitten mennyt rakastumaan sinuun. Ei tässä mitään, olen kärsivällinen ❤️
      Ikävä
      69
      1537
    2. Perusmuotoiset TV-lähetykset loppu

      Nyt sanoo useiden HD-muotoistenkin kanavien kohdalla äly-TV, ettei kanava ole käytössä, haluatko poistaa sen? Kanavia
      Apua aloittelijalle
      114
      1004
    3. YLE Äänekosken kaupunginjohtaja saa ankaraa arvostelua

      Kaupungin johtaja saa ankaraa kritiikkiä äkkiväärästä henkilöstöjohtamisestaan. Uusin häirintäilmoitus päivätty 15 kesä
      Äänekoski
      48
      834
    4. No ei sun asunto eikä mikään

      muukaan sussa ole erikoista. 🤣 köyhä 🤣
      Ikävä
      58
      811
    5. Mitä mietit Honey?

      Kulta nainen ❤️❤️
      Ikävä
      57
      750
    6. Hyvin. Ikävää nainen,

      Että vainoat ja stalkkaat miestäni.onko tarkoituksesi ehkä saada meidät eroamaan?no,siinä et tule onnistumaan
      Ikävä
      74
      746
    7. Missä kaikessa olet erilainen

      Kuin kaivattusi? Voin itse aloittaa: en ole vegaani kuten hän. Enkä harrasta tietokonepelejä lainkaan.
      Ikävä
      39
      737
    8. Uskomaton tekninen vaaliliitto poimii rusinoita pullasta

      Korni näytösesitelmä menossa kaupunginvaltuustossa. Juhlia ei ole kokouksista tiedossa muilla, kuin monipuolue paikalli
      Pyhäjärvi
      72
      724
    9. Linnasuolla poliisi operaatio

      Kamalaa menoa taas meidän ihanassa kaupungissa. https://www.uutisvuoksi.fi/paikalliset/8646060
      Imatra
      26
      719
    10. Katsoin mies itseäni rehellisesti peiliin

      Ja pakko on myöntää, että rupsahtanut olen 😆. Niin se ikä saavuttaa meidät kaikki.
      Ikävä
      41
      697
    Aihe