Kuinka monella tavalla voidaan kaksi valkeaa ja kaksi mustaa hevosta asettaa nxn-shakkilaudalle, siten että uhkauksia ei ole?
- Samanväriset saavat uhata toisiaan, eriväriset eivät.
- Samanväriset hevoset ovat identtisen näköiset eli niistä ei pysty sanomaan kumpi on kumpi (eli niiden järjestyksellä laudalla ei ole väliä). Eriväriset tietenkin on erotettavissa.
- Laudan asento on kiinnitetty (joten kiertosymmetriset, kuten myös peilisymmetrisetkin, asettelut lasketaan erillisinä).
Rauhalliset ratsut
7
54
Vastaukset
- Anonyymi
Helppo laskea pienellä Python ohjelmalla. Lopussa (n>15) alkaa hidastumaan, joten kannattaa ajaa Pypyllä.
n
2: 6
3: 244
4: 4232
5: 37464
6: 204662
7: 824996
8: 2688240
9: 7487972
10: 18497750
11: 41565432
12: 86511416
13: 169026560
14: 313175622
15: 554622140
16: 944700752
17: 1555473036
18: 2485913030
19: 3869378672
20: 5882535480- Anonyymi
Jos joku epäilee tulosten oikeellisuutta, niin alla on kaikki 244 vaihtoehtoa 3x3 laudalla. Laudan ruudut on numeroitu
0,1,2
3,4,5
6,7,8
Alla olevien nelinumeroisten lukujen kaksi ensimmäistä numeroa kertoo valkoisten ratsujen sijainnit ja kaksi jälkimmäistä mustien ratsujen sijainnit. Tarkistakaa muutama tapaus!
0123, 0124, 0134, 0214, 0216, 0218, 0246, 0248, 0268, 0314, 0316, 0346, 0412, 0413, 0416, 0418, 0423, 0426, 0428, 0436, 0438, 0468, 0512, 0513, 0514, 0518, 0523, 0524, 0528, 0534, 0538, 0548, 0623, 0624, 0628, 0634, 0638, 0648, 0713, 0714, 0716, 0718, 0734, 0736, 0738, 0746, 0748, 0768, 0824, 0826, 0846, 1204, 1205, 1245, 1304, 1305, 1307, 1345, 1347, 1357, 1402, 1403, 1405, 1407, 1423, 1425, 1427, 1435, 1437, 1457, 1523, 1524, 1527, 1534, 1537, 1547, 1602, 1603, 1604, 1607, 1623, 1624, 1627, 1634, 1637, 1647, 1734, 1735, 1745, 1802, 1804, 1805, 1807, 1824, 1825, 1827, 1845, 1847, 1857, 2301, 2304, 2305, 2306, 2314, 2315, 2316, 2345, 2346, 2356, 2401, 2405, 2406, 2408, 2415, 2416, 2418, 2456, 2458, 2468, 2514, 2518, 2548, 2604, 2608, 2648, 2714, 2715, 2716, 2718, 2745, 2746, 2748, 2756, 2758, 2768, 2804, 2805, 2806, 2845, 2846, 2856, 3401, 3405, 3406, 3407, 3415, 3416, 3417, 3456, 3457, 3467, 3514, 3517, 3547, 3604, 3607, 3647, 3714, 3715, 3716, 3745, 3746, 3756, 3804, 3805, 3806, 3807, 3845, 3846, 3847, 3856, 3857, 3867, 4512, 4513, 4517, 4518, 4523, 4527, 4528, 4537, 4538, 4578, 4602, 4603, 4607, 4608, 4623, 4627, 4628, 4637, 4638, 4678, 4713, 4715, 4716, 4718, 4735, 4736, 4738, 4756, 4758, 4768, 4802, 4805, 4806, 4807, 4825, 4826, 4827, 4856, 4857, 4867, 5623, 5624, 5627, 5628, 5634, 5637, 5638, 5647, 5648, 5678, 5713, 5714, 5718, 5734, 5738, 5748, 5824, 5827, 5847, 6734, 6738, 6748, 6802, 6804, 6807, 6824, 6827, 6847, 7845, 7846, 7856 Täysin oikein! Tai siis ainakin itse saan samat, joten luultavasti :D.
Vakioaikainen algoritmi on kuitenkin olemassa ja sen löytäminen aika mielenkiintoinen pähkinä.
Esimerkiksi:
n=100: 2490750884432120
n=1000: 249990524114158110222320
n=100000: 2499999990500240011474408001065372794320
Noiden lukujen muoto tietenkin kielii siitä, että siellä on jokin johtava termi. Johan se on nähtävissä siitäkin, että kun lauta kasvaa suureksi, tulee uhkauksien merkitys entistä mitättömämmäksi ja ratsut saavat sijaita melkein kuinka vaan laudalla. No, en nyt paljasta enempää, mutta innostuin vähän ja kirjoitin juttua vastaavasta neljän saman värisen ratsun tehtävästä:
https://membolicsythod.home.blog/2019/06/17/rauhalliset-ratsut/
Kannattaa kokeilla vastaavaa tehtävää ensin kolmelle ratsulle, joka sen alkuperäinen muoto ohjelmointiputkassa olikin, missä tähän tehtävään törmäsin: https://www.ohjelmointiputka.net/postit/tehtava.php?tunnus=kunhev
Tuolla blogissa on muuten juttua myös muista täälläkin palstalla esiintyneistä tehtävistä kuten Vangin pasianssi ja mikäs se toinen oli .. ai niin se suorakaide-tehtävä, mutta en ole vielä julkaissut sitä artikkelia, kannattaa pysyä linjoilla jos kiinnostaa.. :D
- Anonyymi
Valkoiset ratsut voidaan asettaa ihan peruskoulumatikalla tarkasti (n^2-1)*n/2 tavalla. Jos n on iso, mustat ratsut voidaan sijoittaa valkoisten sekaan noin (n^2-19)*(n^2-18)/2 tavalla. Nuo kertomalla saadaan ihan hyvät likiarvot:
n = 100: 2490509474145000
n = 1000: 249990500094749914500000
n = 100000: 2499999990500000009474999999145000000000
n = 1000000: 249999999990500000000094749999999914500000000000
n = 10000000: 24999999999990500000000000947499999999991450000000000000
Aika lähellä sinun tarkkoja arvoja.- Anonyymi
Poistamalla valkoisten ratsujen reunojen yli menevät ja päällekkäiset varaukset saadaan 1000x1000 kahden ratsun keskimääräiseksi ruutujen varausluvuksi 17.9519861838. Pitää laskea vain valkoisten ratsujen n. 500 miljardia kombinaatiota! Kaavassa 18 korvautuu tuolla ja 19 muuttuu 18.9519861838:ksi. Tulokseksi saadaan
n = 1000: 249990524101190492356608
Alkaa olla kohta tarkempi kuin ihan tarkka luku! - Anonyymi
Anonyymi kirjoitti:
Poistamalla valkoisten ratsujen reunojen yli menevät ja päällekkäiset varaukset saadaan 1000x1000 kahden ratsun keskimääräiseksi ruutujen varausluvuksi 17.9519861838. Pitää laskea vain valkoisten ratsujen n. 500 miljardia kombinaatiota! Kaavassa 18 korvautuu tuolla ja 19 muuttuu 18.9519861838:ksi. Tulokseksi saadaan
n = 1000: 249990524101190492356608
Alkaa olla kohta tarkempi kuin ihan tarkka luku!Olin nopeuttanut ohjelmaa virheellisesti ja ohjelma jätti huomioimatta kaukaisimmat yhteiset uhkaukset. Oikea ruutujen keskimääräinen varausluku onkin 17.9519603276 ja sillä saadaan tulokseksi:
n = 1000: 249990524114118310363136
Kolme oikeaa numero lisää. Tarkka luku näyttää olevan ihan oikea! (n^2-1)*n/2 * (n^2-a)*(n^2-b)/2
=
1/4 * (n^8 - (1 b a)n^6 (a b ab)n^4 - (ab)n^2 )
Kun
a = 18.9519861838
b = 17.9519861838,
niin
1 b a = 37.9 = 38
Kyllä, kyllä oikealta näyttää! Pyöristämällä päästäänkin oikeaan kertoimeen :D
a b ab = 377.1 Tämä heittää jo vähän enemmän ja viidennen asteen termi puuttuu välistä. Ratkaisu on siis, paljastettakoon: polynomi!
Voisikohan viidellekin ratsulle vain laskea arvon tarpeeksi monessa pisteessä ja päätellä niistä mikä polynomi ratkaisun on oltava? Se siinä vaan vielä on, että siinä on aina jokin alaraja mistä lähtien polynomi alkaa antamaan arvon ja pitäisi tietää mikä se viiden tapauksessa on ja sitten vielä jotenkin laskea tarpeeksi monessa ja siis tarpeeksi isoissa pisteessä se arvo.
Periaatteessa sitä inkluusio-eksluusio ratkaisuakin voisi koittaa, mutta siinä olisi 5C2 = 10 ehtoa ja niistä tulee melko monia erilaisia leikkaustyyppejä. Miten esimerkiksi 5-ketjujen määrän voi graafilta laskea? Tai no, varmaan niitä voisi eri n:n arvoille laskea ja sitten arvata kaavan, jos siinä näkyy joku systemaattisuus.
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Mies mitä ajattelet naisista?
Kerro mitä ajatuksia nousee. Mitä naiset sinulle merkitsee? Sana on vapaa.14616822Järkyttävä tieto Purrasta
Purra tapasi nykyisen miehensä täällä. Suomi24:ssä! Tulipa likainen olo. Nyt loppuu tämä roikkuminen tällä palstalla.1573515Näin asia on
Tiedän ettei hän koskaan aio lähestyä minua eikä niin ole koskaan aikonutkaan, eikä lähesty ja enkä minä enää tee sitä k152385- 681917
Mikseivät toimittajat vaadi Orpoa vastuuseen lupauksistaan
Missä ne 100.000 uutta työpaikkaa muka ovat? Eivät yhtään missään. Näin sitä Suomessa voi puhua ja luvata mitä sattuu. E2311649- 711558
- 2611229
Aavistan tai oikeastaan
tiedän, että olet hulluna minuun. Mutta ilman kommunikointia, tällaisenaan tilanne ja kaikki draama ovat mun näkökulmast351050Pieni vinkki miehelle
Jos haluat, että tapahtuu jotain edistystä, niin kannattaa suoda ajatus sille, että miltä toimintasi näyttää mulle päin.421033Ajattele, miten häviävän pieni
todennäköisyys on sille, että kaksi tiettyä ihmistä yli viidestä miljoonasta sattuvat tulemaan samalle palstalle ikävöim501019