eksponentti- ja logaritmifunktio

Anonyymi

Hei.

Miten perustelette, että käyrien y=ln(x) ja y=e^x kuvaajat eivät leikkaa? Mulla oli tää joskus koekysymyksenä, ja kokeessa ei ollut käytössä mitään graafisia laskimia/muita, että olisin kuvasta voinut katsoa.

Oon yrittänyt esim. tutkia funktiota f(x)= ln(x)-e^x derivaatalla ja muuta, mutta en osaa ratkaista tuommosia yhtälöitä.

Tietty kokeilemalla löytyy esim. f'(0,5675)=0,0017373..., eli jos arvioin että se olisi derivaatan nollakohta, f(0,5675)=2,3303...>0 ja tutkimalla derivaatan merkkiä päättelen, että se on likimain pienin arvo ja siks ei olisi nollakohtia eli ratkaisuja yhtälölle.
Se ei kuitenkaan varmaan ole kovin hyvä perustelu, koska en voi tietää, pomppaako jossain kohdassa funktion kuvaaja nopeasti x-akselin alapuolella.

Miten siis perustelisitte?

8

171

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Ensiksi ln x on määritelty vain kun x>0. Lisäksi jos 0<x<1, on ln x<0 ja e^x>0. Siten mahdolliset leikkaiskohdat saadaan puolitasossa x>=1. Mutta ln x kasvaa nopeudella 1/x<1 ja e^x nopeudella e^x>1 kun x>1. Ainoa leikkauspiste voisi olla siis x=1. Mutta ln 1=0 ja e^1>0, joten leikkauspisteitä ei ole.

    • Anonyymi

      Eiköhän tuossa riitä, että perustelee, miksi e^x > x ja ln x < x.

    • Funktio e^x on määritelty,jatkuva ja derivoituva kaikilla arvoilla - inf < x < inf.
      Samoin funktio e^x - x. Kun x < 0 on e^x > 0 ja - x > 0 joten e^x - x >0 ja siis e^x > x.
      Kun x = 0 on e^x - x = 1 > 0.
      d/dx(e^x - x) = e^x - 1 > 0 kun x > 0. e^x - x on siis kasvava funktio ja e^x - x > 0 kun x> 0.

      Nähtiin, että kaikilla arvoilla x on e^x > x.

      ln(x) on määritelty ja jatkuva kun x > 0. Se saa kaikki arvot - inf < ln(x) < inf tuolla alueella x > 0.

      Edellä todistetusta seuraa, että e^(ln(x)) > ln(x) kun x > 0. Mutta e^(ln(x)) = x joten siis x > ln(x) kun x > 0.

      On siis e^x > x > ln(x) kun x > 0. Kuvaajat eivät voi leikata.

      • Anonyymi

        sen verran kiinnostaa, että kuka on Ohman itse?


      • Anonyymi
        Anonyymi kirjoitti:

        sen verran kiinnostaa, että kuka on Ohman itse?

        jee, jee, jees,... nyt tuli todella hyvä kysymys... kuka on Ohman, kuka on martta00 (tai ilman nollia) , kuka on aeija, kuka on KL... hmm... kukin, no mitäpä se oikeesti meille kuuluu


      • Pieni lisäkommentti:

        Koska d/dx ln(x) = 1/x > 0 on myös ln( ) kasvava funktio. Koska x > ln(x) on siis

        ln(x) > ln(ln(x)) > ln(ln(ln(x))) >...jne.

        Vastaavasti , koska e^x > x, niin e^(e^x)) > e^x, e^(e^(e^x)) > e^(e^x)) jne.

        Ohman = Ohman3


    • Anonyymi

      Seitenpuol kasiviis? Tä?

    • Anonyymi

      Otetaan vielä yksi tapa: tarkastellaan funktiota lnx/e^x. Väite on tosi, jos se on aina <1. Sen derivaatta on (1/x-lnx)/e^x. Nähdään, että funktio on ensin (kun x>0) kasvava, sitten saavuttaa maksimin kohdassa lnx=1/x ja sitten on laskeva. Nähdään että maksimikohta on välillä 1<x<e (likiarvo x=1,763). Ja nähdään, että maksimikohdassa tarkasteltava funktio <1.

    Ketjusta on poistettu 1 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Kylläpä on nautinnollista taas tämä palstan vassari valitus!

      Lähes jokainen avaus on vassareiden kitinää ja valitusta. Eikö se tarkoitakin, että silloin asiat menee maassamme parem
      Maailman menoa
      73
      2951
    2. HS: persujen v. 2015 turvapaikanhakijoista alle puolet töissä

      Aikuisina Suomeen tulleista ja myönteisen päätöksen saaneista vain 42 prosenttia oli vuonna 2023 töissä, vaikka he ovat
      Maailman menoa
      52
      2230
    3. Yksi kuoli nokkakolarissa

      Asiasta YLEn verkkosivuilla uutinen klo 23.02. Oliko itsemurha?
      Oulainen
      24
      1949
    4. Helvetistä ei ole paluuta

      Kun ihminen laskeutuu kuolleiden maailmaan, kauhujen valtakuntaan ja tuonelan ovet sulkeutuu kiinni, se on karu tunne ku
      Idän uskonnot
      385
      1450
    5. Mikä on kaivattusi ammatti

      entäpä sinun? 💶
      Ikävä
      66
      1363
    6. Persut muuten hyväksyvät 2 + 8 mrd. euron maatalous- ja yritystuet

      Vaikka molemmat tukimuodot tiedetään haitallisiksi, koska ovat käytännössä pelkkää säilyttävää tukea, eivätkä kannusta k
      Maailman menoa
      40
      1344
    7. Terveisiä vanhemmalle

      J-miehelle. Ehkä nähdään vielä 😉
      Ikävä
      56
      1109
    8. Järjetön Topi-ilta

      Lisää tappiota konkurssipesälle. Miten voi olla mahdollidta , että annetaan järjestää tämä. Sorsakoski pyörii haudassaan
      Ähtäri
      20
      1089
    9. Mikä kaivatussasi herätti mielenkiintosi

      Kun tapasitte ensi kerran? Ulkonäössä? Luonteessa tai olemuksessa? Kuinka nopeasti mielenkiinto muuttui ihastukseksi?
      Ikävä
      76
      1022
    10. Halutaan toisiamme

      Mutta se on Salaisuus❤️
      Intohimo
      47
      973
    Aihe