eksponentti- ja logaritmifunktio

Anonyymi

Hei.

Miten perustelette, että käyrien y=ln(x) ja y=e^x kuvaajat eivät leikkaa? Mulla oli tää joskus koekysymyksenä, ja kokeessa ei ollut käytössä mitään graafisia laskimia/muita, että olisin kuvasta voinut katsoa.

Oon yrittänyt esim. tutkia funktiota f(x)= ln(x)-e^x derivaatalla ja muuta, mutta en osaa ratkaista tuommosia yhtälöitä.

Tietty kokeilemalla löytyy esim. f'(0,5675)=0,0017373..., eli jos arvioin että se olisi derivaatan nollakohta, f(0,5675)=2,3303...>0 ja tutkimalla derivaatan merkkiä päättelen, että se on likimain pienin arvo ja siks ei olisi nollakohtia eli ratkaisuja yhtälölle.
Se ei kuitenkaan varmaan ole kovin hyvä perustelu, koska en voi tietää, pomppaako jossain kohdassa funktion kuvaaja nopeasti x-akselin alapuolella.

Miten siis perustelisitte?

8

156

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Ensiksi ln x on määritelty vain kun x>0. Lisäksi jos 0<x<1, on ln x<0 ja e^x>0. Siten mahdolliset leikkaiskohdat saadaan puolitasossa x>=1. Mutta ln x kasvaa nopeudella 1/x<1 ja e^x nopeudella e^x>1 kun x>1. Ainoa leikkauspiste voisi olla siis x=1. Mutta ln 1=0 ja e^1>0, joten leikkauspisteitä ei ole.

    • Anonyymi

      Eiköhän tuossa riitä, että perustelee, miksi e^x > x ja ln x < x.

    • Funktio e^x on määritelty,jatkuva ja derivoituva kaikilla arvoilla - inf < x < inf.
      Samoin funktio e^x - x. Kun x < 0 on e^x > 0 ja - x > 0 joten e^x - x >0 ja siis e^x > x.
      Kun x = 0 on e^x - x = 1 > 0.
      d/dx(e^x - x) = e^x - 1 > 0 kun x > 0. e^x - x on siis kasvava funktio ja e^x - x > 0 kun x> 0.

      Nähtiin, että kaikilla arvoilla x on e^x > x.

      ln(x) on määritelty ja jatkuva kun x > 0. Se saa kaikki arvot - inf < ln(x) < inf tuolla alueella x > 0.

      Edellä todistetusta seuraa, että e^(ln(x)) > ln(x) kun x > 0. Mutta e^(ln(x)) = x joten siis x > ln(x) kun x > 0.

      On siis e^x > x > ln(x) kun x > 0. Kuvaajat eivät voi leikata.

      • Anonyymi

        sen verran kiinnostaa, että kuka on Ohman itse?


      • Anonyymi
        Anonyymi kirjoitti:

        sen verran kiinnostaa, että kuka on Ohman itse?

        jee, jee, jees,... nyt tuli todella hyvä kysymys... kuka on Ohman, kuka on martta00 (tai ilman nollia) , kuka on aeija, kuka on KL... hmm... kukin, no mitäpä se oikeesti meille kuuluu


      • Pieni lisäkommentti:

        Koska d/dx ln(x) = 1/x > 0 on myös ln( ) kasvava funktio. Koska x > ln(x) on siis

        ln(x) > ln(ln(x)) > ln(ln(ln(x))) >...jne.

        Vastaavasti , koska e^x > x, niin e^(e^x)) > e^x, e^(e^(e^x)) > e^(e^x)) jne.

        Ohman = Ohman3


    • Anonyymi

      Seitenpuol kasiviis? Tä?

    • Anonyymi

      Otetaan vielä yksi tapa: tarkastellaan funktiota lnx/e^x. Väite on tosi, jos se on aina <1. Sen derivaatta on (1/x-lnx)/e^x. Nähdään, että funktio on ensin (kun x>0) kasvava, sitten saavuttaa maksimin kohdassa lnx=1/x ja sitten on laskeva. Nähdään että maksimikohta on välillä 1<x<e (likiarvo x=1,763). Ja nähdään, että maksimikohdassa tarkasteltava funktio <1.

    Ketjusta on poistettu 1 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Työsuhdepyörän veroetu poistuu

      Hallituksen veropoliittisen Riihen uutisia: Mitä ilmeisimmin 1.1.2026 alkaen työsuhdepyörän kuukausiveloitus maksetaan
      Pyöräily
      229
      7080
    2. Pakko tulla tänne

      jälleen kertomaan kuinka mahtava ja ihmeellinen sekä parhaalla tavalla hämmentävä nainen olet. En ikinä tule kyllästymää
      Ikävä
      45
      1325
    3. Fuengirola.fi: Danny avautuu yllättäen ex-rakas Erika Vikmanista: "Sanoisin, että hän on..."

      Danny matkasi Aurinkorannikolle Helmi Loukasmäen kanssa. Musiikkineuvoksella on silmää naiskauneudelle ja hänen ex-raka
      Kotimaiset julkkisjuorut
      29
      1158
    4. Yksi kysymys

      Yksi kysymys, minkä kysyisit kaivatultasi. Mikä se olisi?
      Ikävä
      75
      921
    5. Hävettää muuttaa Haapavedelle.

      Joudun töiden vuoksi muuttamaan Haapavedelle, kun työpaikkani siirtyi sinne. Nyt olen joutunut pakkaamaan kamoja toisaal
      Haapavesi
      50
      915
    6. Katseestasi näin

      Silmissäsi syttyi hiljainen tuli, Se ei polttanut, vaan muistutti, että olin ennenkin elänyt sinun rinnallasi, jossain a
      Ikävä
      62
      877
    7. Työhuonevähennys poistuu etätyöntekijöiltä

      Hyvä. Vituttaa muutenkin etätyöntekijät. Ei se tietokoneen naputtelu mitään työtä ole.
      Maailman menoa
      96
      856
    8. Toinen kuva mikä susta on jäänyt on

      tietynlainen saamattomuus ja laiskuus. Sellaineen narsistinen laiskanpuoleisuus. Palvelkaa ja tehkää.
      Ikävä
      38
      821
    9. Tietenkin täällä

      Kunnan kyseenalainen maine kasvaa taas , joku huijannut monen vuoden ajan peltotukia vilpillisin keinoin.
      Suomussalmi
      14
      786
    10. Jäähalli myynnissä!

      Pitihän se arvata kun tuonne se piti rakentaa väkisin.
      Äänekoski
      43
      763
    Aihe