Hei.
Miten perustelette, että käyrien y=ln(x) ja y=e^x kuvaajat eivät leikkaa? Mulla oli tää joskus koekysymyksenä, ja kokeessa ei ollut käytössä mitään graafisia laskimia/muita, että olisin kuvasta voinut katsoa.
Oon yrittänyt esim. tutkia funktiota f(x)= ln(x)-e^x derivaatalla ja muuta, mutta en osaa ratkaista tuommosia yhtälöitä.
Tietty kokeilemalla löytyy esim. f'(0,5675)=0,0017373..., eli jos arvioin että se olisi derivaatan nollakohta, f(0,5675)=2,3303...>0 ja tutkimalla derivaatan merkkiä päättelen, että se on likimain pienin arvo ja siks ei olisi nollakohtia eli ratkaisuja yhtälölle.
Se ei kuitenkaan varmaan ole kovin hyvä perustelu, koska en voi tietää, pomppaako jossain kohdassa funktion kuvaaja nopeasti x-akselin alapuolella.
Miten siis perustelisitte?
eksponentti- ja logaritmifunktio
8
155
Vastaukset
- Anonyymi
Ensiksi ln x on määritelty vain kun x>0. Lisäksi jos 0<x<1, on ln x<0 ja e^x>0. Siten mahdolliset leikkaiskohdat saadaan puolitasossa x>=1. Mutta ln x kasvaa nopeudella 1/x<1 ja e^x nopeudella e^x>1 kun x>1. Ainoa leikkauspiste voisi olla siis x=1. Mutta ln 1=0 ja e^1>0, joten leikkauspisteitä ei ole.
- Anonyymi
Eiköhän tuossa riitä, että perustelee, miksi e^x > x ja ln x < x.
Funktio e^x on määritelty,jatkuva ja derivoituva kaikilla arvoilla - inf < x < inf.
Samoin funktio e^x - x. Kun x < 0 on e^x > 0 ja - x > 0 joten e^x - x >0 ja siis e^x > x.
Kun x = 0 on e^x - x = 1 > 0.
d/dx(e^x - x) = e^x - 1 > 0 kun x > 0. e^x - x on siis kasvava funktio ja e^x - x > 0 kun x> 0.
Nähtiin, että kaikilla arvoilla x on e^x > x.
ln(x) on määritelty ja jatkuva kun x > 0. Se saa kaikki arvot - inf < ln(x) < inf tuolla alueella x > 0.
Edellä todistetusta seuraa, että e^(ln(x)) > ln(x) kun x > 0. Mutta e^(ln(x)) = x joten siis x > ln(x) kun x > 0.
On siis e^x > x > ln(x) kun x > 0. Kuvaajat eivät voi leikata.- Anonyymi
sen verran kiinnostaa, että kuka on Ohman itse?
- Anonyymi
Anonyymi kirjoitti:
sen verran kiinnostaa, että kuka on Ohman itse?
jee, jee, jees,... nyt tuli todella hyvä kysymys... kuka on Ohman, kuka on martta00 (tai ilman nollia) , kuka on aeija, kuka on KL... hmm... kukin, no mitäpä se oikeesti meille kuuluu
Pieni lisäkommentti:
Koska d/dx ln(x) = 1/x > 0 on myös ln( ) kasvava funktio. Koska x > ln(x) on siis
ln(x) > ln(ln(x)) > ln(ln(ln(x))) >...jne.
Vastaavasti , koska e^x > x, niin e^(e^x)) > e^x, e^(e^(e^x)) > e^(e^x)) jne.
Ohman = Ohman3
- Anonyymi
Seitenpuol kasiviis? Tä?
- Anonyymi
Otetaan vielä yksi tapa: tarkastellaan funktiota lnx/e^x. Väite on tosi, jos se on aina <1. Sen derivaatta on (1/x-lnx)/e^x. Nähdään, että funktio on ensin (kun x>0) kasvava, sitten saavuttaa maksimin kohdassa lnx=1/x ja sitten on laskeva. Nähdään että maksimikohta on välillä 1<x<e (likiarvo x=1,763). Ja nähdään, että maksimikohdassa tarkasteltava funktio <1.
Ketjusta on poistettu 1 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
- 1636532
- 531913
Klaukkalan onnettomuus 4.4
Klaukkalassa oli tänään se kolmen nuoren naisen onnettomuus, onko kellään mitään tietoa mitä kävi tai ketä onnettomuudes441671- 541142
Ukraina ja Zelenskyn ylläpitämä sota tuhoaa Euroopan, ei Venäjä
Mutta tätä ei YLE eikä Helsingin Sanomat kerto.3371085Kolari Klaukkala
Kaksi teinityttö kuoli. Vastaantulijoille ei käynyt mitenkään. Mikä auto ja malli telineillä oli entä se toinen auto? Se501034Ooo! Kaija Koo saa kesämökille öky-rempan:jättimäinen terde, poreallas... Katso ennen-jälkeen kuvat!
Wow, nyt on Kaija Koon mökkipihalla kyllä iso muutos! Miltä näyttää, haluaisitko omalle mökillesi vaikkapa samanlaisen l13990Olisinpa jo siellä, otatkohan minut vastaan
Olisitpa lähelläni ja antaisit minun maalata sinulle kuvaa siitä kaikesta ikävästä, tuskasta, epävarmuudesta ja mieleni79918Kevyt on olo
Tiedättekö, että olo kevenee kummasti, kun päästää turhista asioista tai ihmisistä irti! Tämä on hyvä näin <384918Toivoisin, että lähentyisit kanssani
Tänään koin, että välillämme oli enemmän. Kummatkin katsoivat pidempään kuin tavallisesti toista silmiin. En tiedä mistä14897