Lyhin reitti kahden pisteen välillä on jana?

Anonyymi

Euklidisessa avaruudessa kahden avaruuden pisteen välinen lyhin reitti on jana näiden pisteiden välillä.

Tämä on tietenkin teoreema, ja se osoitetaan usein variaatiolaskennassa perusesimerkkinä, mutta variaatiolaskennassa funktion pitää olla derivoituva sileä funktio.

Miten tämä todistetaan yleisen jatkuvan reitin (funktion) osalta? Eli jos oletetaan vain jatkuvuus, mutta ei derivoituvuutta.

11

249

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Koska reitin pituus määritellään infimumina kaikista murtoviivan pituuksista kaikkien mahdollisten jaotuksien yli, niin väite täytyy ensin osoittaa murtoviivalle. Sille se tulee kolmioepäyhtälöstä.

      Nyt mikään reitti ei voi omata pienempää pituutta kuin suora jana: pitäisi löytyä jono murtoviivoja, joiden pituudet konvergoi tähän reitin pituuden arvoon, mutta jokainen murtoviiva on aina vähintään janan pituinen edellisen huomion nojalla.

      • Reitin pituuden määritelmässä on muistaakseni vielä lisävaatimus, että osituksen kaikki välien pituudet pitää mennä nollaan (niinkuin Riemannin integraalissakin). Pakkohan siinä on joku lisävaatimus olla, eihän ilman sitä millekään reitille tule muuta kuin se lyhyin mahdollinen pituus.
        Mitenkä minä en nyt mistään löydä tuota määritelmää, wikipediakin antaa vaan tällaisen sivun: https://en.wikipedia.org/wiki/Path_length . Kertokaa joku miten se määritelmä nyt kuuluikaan.

        Mutta toimisiko tuo yo. idea?


      • Ei kun joo, täältä löytyikin: https://en.wikipedia.org/wiki/Arc_length#General_approach

        Eli supremumina. No niinhän minä vähän aluksi muistelinkin. Mutta tuollakin vaaditaan sileä kaari, eikös se sitten toimi yleisille (jatkuville) poluille. Suoristumattomuuskaan ei pitäisi olla ongelma, silloin vain pituus on ääretön.


    • Anonyymi

      Mitenkäs sinä määrittelet janan? Määritelmä pitäisi olla ennenkuin asiasta voi puhua.

      • Minun mielestäni jana A:stä B:hen on kuvaus

        (1-t)A tB, t∈[0, 1]

        Se ongelmahan siinä saattaa olla, että puhutaanko kuvauksesta vai sen kuvajoukosta. Ja sitten erilaiset parametrisoinnit, mutta ainakin nyt voidaan rajoittua injektiivisiin polkuihin, sillä eihän ikinä kannata palata pisteeseen, jossa on jo käyty, kun lyhintä mahdollista reittiä metsästetään. Eikös tällöin kaikki parametrisoinnit anna saman pituuden?
        (Ks. esim: https://math.stackexchange.com/questions/2757904/arc-length-parametrization-of-a-continuous-curve , nythän voidaan myös rajoittua suoristuviin (rectifiable) käyriin. ) Joo, linkistä https://www.encyclopediaofmath.org/index.php/Rectifiable_curve löytyy tieto: "The number L(γ) is the length of the curve and it is independent of the parametrization".


      • minkkilaukku kirjoitti:

        Minun mielestäni jana A:stä B:hen on kuvaus

        (1-t)A tB, t∈[0, 1]

        Se ongelmahan siinä saattaa olla, että puhutaanko kuvauksesta vai sen kuvajoukosta. Ja sitten erilaiset parametrisoinnit, mutta ainakin nyt voidaan rajoittua injektiivisiin polkuihin, sillä eihän ikinä kannata palata pisteeseen, jossa on jo käyty, kun lyhintä mahdollista reittiä metsästetään. Eikös tällöin kaikki parametrisoinnit anna saman pituuden?
        (Ks. esim: https://math.stackexchange.com/questions/2757904/arc-length-parametrization-of-a-continuous-curve , nythän voidaan myös rajoittua suoristuviin (rectifiable) käyriin. ) Joo, linkistä https://www.encyclopediaofmath.org/index.php/Rectifiable_curve löytyy tieto: "The number L(γ) is the length of the curve and it is independent of the parametrization".

        Tai siis eihän sillä injektiivisyydellä ole sen parametrisoinnista riippumattomuuden kanssa vissiin mitään tekemistä, mutta ehkä relevantimpi kysymys olisi että ovatko kaikki saman kuvajoukon tuottavat injektiiviset polut toistensa uudelleen parametrisointeja.


      • Anonyymi
        minkkilaukku kirjoitti:

        Minun mielestäni jana A:stä B:hen on kuvaus

        (1-t)A tB, t∈[0, 1]

        Se ongelmahan siinä saattaa olla, että puhutaanko kuvauksesta vai sen kuvajoukosta. Ja sitten erilaiset parametrisoinnit, mutta ainakin nyt voidaan rajoittua injektiivisiin polkuihin, sillä eihän ikinä kannata palata pisteeseen, jossa on jo käyty, kun lyhintä mahdollista reittiä metsästetään. Eikös tällöin kaikki parametrisoinnit anna saman pituuden?
        (Ks. esim: https://math.stackexchange.com/questions/2757904/arc-length-parametrization-of-a-continuous-curve , nythän voidaan myös rajoittua suoristuviin (rectifiable) käyriin. ) Joo, linkistä https://www.encyclopediaofmath.org/index.php/Rectifiable_curve löytyy tieto: "The number L(γ) is the length of the curve and it is independent of the parametrization".

        Kysyin oikeastaan aloittajalta. Mutta kuten vastasit, jana on osa suoraa (eräs käyrä sekin) ja käyrän kaaren pituus määritellään differentiaaligeometriassa käyrän nopeusvektorin (tangentin) avulla joka edellyttää differentioituvuutta. Ja onhan tuo suoran esitys differentioituva. Voidaan myäs sanoa, että suora on suora koska sen geodeettinen kaarevuus = 0. Mutta tämäkin edellyttää derivaatan olemassaoloa.

        Joten enpä tiedä miten aloittaja määrittäisi tuon "lyhimmän tien" ilman differentiaaligeometriaa ja tarvitsematta derivaattaa.


    • Anonyymi

      Janan määritelmä on vektori'jatkuuseuraavalleruville

    • Anonyymi

      Jokasiiseimuutupituudedssseli sille ei tehdämuitaoperaatioitajasenputuusonlaskettupythagoraanlauseebmukaisedti

    • Anonyymi

      Hohohoho, setan mukaan se olisi vihkivala, hohohoho

    • Yritän vähän tarkentaa edellistä vastaustani.
      Reitin f (jatkuva kuvaus joukolta [0, 1]) pituus L(f) määritellään näin:

      L(f) = sup {murtoviivan f(t0), f(t1),..., f(tm) pituus},

      missä supremum on yli kaikkien välin [0, 1] jaotusten 0=t0<t1<...<tm=1.
      Tämähän löytyy wikipediasta ( https://en.wikipedia.org/wiki/Arc_length#General_approach ) ja siellä tosiaan sanotaan: "This definition is also valid if f is merely continuous, not differentiable."

      Kuten edellä, väite on murtoviivalle helposti nähtävissä (kolmioepäyhtälö tapauksessa m=2 ja yleinen tapaus induktiolla(?)) ja sitäpaitsi murtoviivahan on paloittain sileä käyrä, joten periaatteessa tämä tapaus on jo tehty.

      Olkoon sitten f mikä tahansa jatkuva polku haluttujen pisteiden välillä (olkoot ne A ja B). Koska polun pituus määritellään eo. supremumina, löydetään jono murtoviivoja siten, että L(f) on näiden pituuksien raja-arvo. Koska jokaisen murtoviivan pituus on korkeintaan |AB|, niin myös L(f) on korkeintaan |AB|.


      Loppupohdinta:
      Oikeastaan tässä määritelmässä kyllä on jo implisiittisesti pohjalla oletus, että jana on lyhin reitti, sillä siinä käytetään murtoviivoja, jotka ovat janojen yhdisteitä. ja ajatellaan, että nämä antavat kunkin välipiste-parin [f(t_j), f(t_{j 1})] välille alarajan/approksimaation. Tai siis sehän on oikeastaan se euklidinen etäisyys mitä käytetään ja se määritelmällisesti on juuri janan pituus. Mutta mitä muuta määritelmää reitin pituudelle voitaisiin sitten käyttää? Joku metriikkahan meillä täytyy olla olemassa, jotta etäisyyksistä voidaan puhua. Tämähän tuntuu hieman kehäpäätelmältä, kun meillä on euklidinen metriikka joka tulee janan pituudesta.

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Porvarimediat paniikissa demareiden huiman kannatuksen vuoksi

      Piti sitten keksiä "nimettömiin lähteisiin" perustuen taas joku satu. Ovat kyllä noloja, ja unohtivat sen, että vaalit
      Maailman menoa
      157
      8362
    2. KATASTROFI - Tytti Tuppurainen itse yksi pahimmista kiusaajista!!!

      STT:n lähteiden mukaan SDP:n eduskuntaryhmän puheenjohtaja Tytti Tuppurainen on käyttäytynyt toistuvasti epäasiallisesti
      Maailman menoa
      442
      7469
    3. Mikä siinä on ettei persuille leikkaukset käy?

      On esitetty leikkauksia mm. haitallisiin maataloustukiin, kuin myös muihin yritystukiin. Säästöjä saataisiin lisäksi lei
      Maailman menoa
      74
      3844
    4. Lääppijä Lindtman jäi kiinni itse teosta

      Lindtman kyselemättä ja epäasiallisesti koskettelee viestintäpäällikköä. https://www.is.fi/politiikka/art-2000011780852
      Maailman menoa
      151
      3551
    5. Juuri nyt! Tytti Tuppurainen on käyttäytynyt toistuvasti epäasiallisesti

      Ai että mä nautin, Tytti erot vireille! "Käytös on kohdistunut avustajia ja toisia kansanedustajia kohtaan, uutisoi STT
      Maailman menoa
      112
      3009
    6. Huomaatteko Demari Tytti ei esitä pahoitteluitaan

      Samanlainen ilmeisesti kuin Marin eli Uhriutuu no he ovat Demareita ja muiden yläpuolella siis omasta mielestään
      Maailman menoa
      51
      2607
    7. Onko kaivattusi

      liian vetovoimainen seksuaalisesti?
      Ikävä
      126
      2026
    8. Puolen vuoden koeaika

      Voisi toimia meillä. Ensin pitäis selvittää "vaatimukset" puolin ja toisin, ennen kuin mitään aloittaa. Ja matalalla pro
      Ikävä
      23
      1863
    9. Turvaan tulleet lähettävät omia lapsiaan vaaraan - hullua

      MOT-ohjelman jakso ”Loma vaihtui kahleisiin” kertoi, kuinka Suomessa ja muualla Euroopassa asuvat somaliperheet lähettäv
      Maailman menoa
      36
      1684
    10. Tytti Tuppurainen nöyryyttää avustajiaan

      Tytti Tuppurainen nöyryyttää SDP:n eduskuntaryhmän kokouksissa sekä avustajia että kansanedustajia. Hän nolaa ihmisiä ju
      Kotimaiset julkkisjuorut
      181
      1530
    Aihe