Yhtälöpari

Anonyymi

Miten lasketaan yhtölöparilla esim. Nauloja on yhteensä 500. Toisessa laatikossa on 30 naulaa vähemmän. Paljonko on kummassakin laatikossa (kaksi laatikkoa)?

20

224

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Muodostamalla yhtälöpari ja ratkaisemalla se. Muuttujiksi tietenkin laatikoiden naulamäärät. Millaiset yhtälöt saat annetuista tiedoista muodostettua?

      Mitä se tarkoittaisi, että yhteensä on 500 naulaa? Siis jos molemman laatikon sisältö kaadetaan samaan kasaan ja sitten lasketaan naulat yksi kerrallaan, niin saadaan luku 500. Vinkki: tämähän tarkoittaa summaamista.

      Entäpä sitten se, että toisessa on 30 vähemmän? Sehän tarkoittaa että siinä toisessa on sitten 30 enemmän. Jos alat ottamaan laatikoista nauloja kummastakin yksi kerrallaan (paritellen, siis naulat paritellen ei tarvitse samalla yhdyntää harjoittaa) pois eli otat yhtä monta kummastakin ja sitten kun toisessa on nolla, niin toisessa on vielä 30. Tällähän on jotain tekemistä erotuksen kanssa.

      Nämähän ovat molemmat ajatuskokeita, sillä jos ekassa jo sotket naulat yhteen et enää muista kuinka monta per laatikko oli, toki sen voi rekonstruoida tiedoista. Mutta jos sinulla ne laatikot oikeasti on, niin ratkaisuhan onnistuu ihan laskemallakin laatikoiden sisällöt.

    • Anonyymi

      Ota 30 naulaa pois kokonaismäärästä. Jäljellä jää 470. Tuosta on puolet eli 235 kummassakin laatikossa. Lisää 30 takaisin toiseen laatikkoon.

      Nyt kun tiedät vastauksen ja tarvittavat laskutoimitukset, voi muodosta helposti kaksi yhtälöä.

    • Anonyymi

      a b = 500
      a - b = 30

    • Anonyymi

      V=A-LAATIKKO 265 JA B LAATIKKO 235 JA KAIKKI TÄMÄ ILMAN YHMYNTÖJÄ.

    • Matriisilla voisi laskea näin
      [[1,1], [1,-1]] [x, y] = [500, 30],
      joten
      [x, y] = [[1,1], [1,-1]]^{-1} [500, 30] = [265, 235].

      • Anonyymi

        Matriisin käyttö tuntuu magialta :)
        Jostain syystä se toimii.


      • Anonyymi

        Ilmeisesti kuitenkin niin itsestään selvää ettei sen yleistä todistusta näe missään ;-(


      • Anonyymi kirjoitti:

        Ilmeisesti kuitenkin niin itsestään selvää ettei sen yleistä todistusta näe missään ;-(

        Ovat hyvä abstraktio. Muodostavat sitten renkaan itsessäänkin ja tietysti mielenkiintoisia ryhmiä.


      • Anonyymi
        Anonyymi kirjoitti:

        Ilmeisesti kuitenkin niin itsestään selvää ettei sen yleistä todistusta näe missään ;-(

        A olkoon matriisi jolla on käänteismatriisi A^( - 1).Sen määritelmä on seuraava:

        A*A^(- 1) =A^(- 1) * A = I missä I on ykkösmatriisi: jokaiselle matriisille C on I*C = C*I = C.

        Jos meillä on yhtälöryhmä

        A*X = B niin A^( - 1) * A * X =A^( - 1) * B eli I*X = A^( - 1) * B
        joten X =A^( - 1) * B.

        Ei ole magiaa. Mutta tietysti matriisilaskenta näin yksinkertaisessa tehtävässä on vähän ylimitoitettua. Lienee huumoria.


      • Anonyymi
        Anonyymi kirjoitti:

        A olkoon matriisi jolla on käänteismatriisi A^( - 1).Sen määritelmä on seuraava:

        A*A^(- 1) =A^(- 1) * A = I missä I on ykkösmatriisi: jokaiselle matriisille C on I*C = C*I = C.

        Jos meillä on yhtälöryhmä

        A*X = B niin A^( - 1) * A * X =A^( - 1) * B eli I*X = A^( - 1) * B
        joten X =A^( - 1) * B.

        Ei ole magiaa. Mutta tietysti matriisilaskenta näin yksinkertaisessa tehtävässä on vähän ylimitoitettua. Lienee huumoria.

        Jos ajatteleen vaikka kuuden muuttujan kuuden yhtälön ryhmää. Se että kaikki ne laskutoimitukset jotka suoritetaan tuottavat halutun tuloksen.


      • Anonyymi
        Anonyymi kirjoitti:

        Jos ajatteleen vaikka kuuden muuttujan kuuden yhtälön ryhmää. Se että kaikki ne laskutoimitukset jotka suoritetaan tuottavat halutun tuloksen.

        Saako sen jotenkin rekursiivisesti kun ensin osoittaa 2 x 2 tapauksen.


      • Anonyymi
        Anonyymi kirjoitti:

        Saako sen jotenkin rekursiivisesti kun ensin osoittaa 2 x 2 tapauksen.

        Ei tässä tarvita mitään rekursiota. A on n x n - matriisi jolloin yhtälöryhmässä on n-yhtälöä ja n-tumtematonta, n n = 2,3,4,...

        Kunhan käänteismatriisi on olemasssa eli A:n determinantti det(A) = / 0, niin ratkaisu toimii kuten näytin.

        Eräs mukava tapa ratkaista yhtälöryhmä on Cramerin sääntö, kts. esim. Wikipedia.


      • Anonyymi
        Anonyymi kirjoitti:

        Ei tässä tarvita mitään rekursiota. A on n x n - matriisi jolloin yhtälöryhmässä on n-yhtälöä ja n-tumtematonta, n n = 2,3,4,...

        Kunhan käänteismatriisi on olemasssa eli A:n determinantti det(A) = / 0, niin ratkaisu toimii kuten näytin.

        Eräs mukava tapa ratkaista yhtälöryhmä on Cramerin sääntö, kts. esim. Wikipedia.

        p.o. n = 2,3,4,...


      • Anonyymi
        Anonyymi kirjoitti:

        Ei tässä tarvita mitään rekursiota. A on n x n - matriisi jolloin yhtälöryhmässä on n-yhtälöä ja n-tumtematonta, n n = 2,3,4,...

        Kunhan käänteismatriisi on olemasssa eli A:n determinantti det(A) = / 0, niin ratkaisu toimii kuten näytin.

        Eräs mukava tapa ratkaista yhtälöryhmä on Cramerin sääntö, kts. esim. Wikipedia.

        Minun mielestäni tuo on vain valmiin merkintätavan käyttöä.
        Ei osoita tai todista mitään että se toimii tai miksi se toimii.


      • Anonyymi
        Anonyymi kirjoitti:

        Minun mielestäni tuo on vain valmiin merkintätavan käyttöä.
        Ei osoita tai todista mitään että se toimii tai miksi se toimii.

        Miksi sen pitäisi jotain todistaa ja mitä sen pitäisi todistaa?


      • Anonyymi
        Anonyymi kirjoitti:

        Minun mielestäni tuo on vain valmiin merkintätavan käyttöä.
        Ei osoita tai todista mitään että se toimii tai miksi se toimii.

        Olkoon sinulla yhden muuttujan yhtälö a x = b. Jos a =/ 0 niin sillä on käänteiselementti a^( - 1) = 1/a. Kerrot yhtälön molemmat puolet sillä. Saadaan
        1/a * a x = 1/a * b eli x = b/a.
        Tässä sinulla on 1 x 1 - matriisi a jas sen käänteismatriisi on 1/a. det(a) = a =/ 0.
        Ihan samoin käy yleisemmän n x n - matriisin kanssa kuten aiemmin jo yritin serlittää. Matriisialgebrassa A^( - 1) * A = I jne.

        a(1,1) x(1) a(1,2) x(2) ... a(1,n) x(n) = b(1)
        ....
        a(n,1) x(1) ... a(n,n) x(n) = b(n)

        on matriisimuodossa A *X = B missä A on kertoimien a(i,j) muodostama matriisi, X on tuntemattomien x(i) muodostama pystyvektori ja B on tunnettujen lukujen b(i) muodostama pystyvektori.
        Matriisialgebran sääntöjen mukaan täytyy olla X = A^( - 1) * B.


      • Anonyymi
        Anonyymi kirjoitti:

        Olkoon sinulla yhden muuttujan yhtälö a x = b. Jos a =/ 0 niin sillä on käänteiselementti a^( - 1) = 1/a. Kerrot yhtälön molemmat puolet sillä. Saadaan
        1/a * a x = 1/a * b eli x = b/a.
        Tässä sinulla on 1 x 1 - matriisi a jas sen käänteismatriisi on 1/a. det(a) = a =/ 0.
        Ihan samoin käy yleisemmän n x n - matriisin kanssa kuten aiemmin jo yritin serlittää. Matriisialgebrassa A^( - 1) * A = I jne.

        a(1,1) x(1) a(1,2) x(2) ... a(1,n) x(n) = b(1)
        ....
        a(n,1) x(1) ... a(n,n) x(n) = b(n)

        on matriisimuodossa A *X = B missä A on kertoimien a(i,j) muodostama matriisi, X on tuntemattomien x(i) muodostama pystyvektori ja B on tunnettujen lukujen b(i) muodostama pystyvektori.
        Matriisialgebran sääntöjen mukaan täytyy olla X = A^( - 1) * B.

        Kiitos selityksestä. Yritän varsinkin tuota "Ihan samoin käy yleisemmän n x n - matriisin kanssa " kohtaa saada itselleni selitettyä. Pitää ottaa kynä ja paperi avuksi pitämään ajatukset kasassa.

        Ehkä tämä on sitä että "kuinka selität lapselle" kategoriaa 😁


    • Tällaisen laskee päässä nopeasti siten, että ensin jakaa 500 kahdella ja saa 250. Sitten muokkaa tulosta 15 molempiin suuntiin eli 235 ja 265.

    • Anonyymi

      500 = X X – 30

      530 = 2X

      X = 530 / 2

      X = 265

      Eli toisessa laatikossa (laatikko X) on nauloja 265.

      Toisessa laatikossa (laatikko Y) on nauloja 30 vähemmän eli 235.

      Tarkistetaan: 265 235 = 500 ; ELI OIKEIN LASKETTU

      • Anonyymi

        Ikävä kyllä saat tällä kertaa vain 1 pisteen.

        Tehtävä piti ehdottomasti ratkaista yhtälöparilla. Niitähän tällä kurssilla harjoitellaan ensimmäistä kertaa. Aivan liian helppoa ilman sitä. On tietysti maailman helpoin yhtälöparitehtävänäkin:

        x y = 500
        x - y = 30


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Me työeläkeläiset äänestämme SDP:tä

      SDP on luonut koko työeläkejärjestelmän, jonka hedelmistä saamme nyt nauttia. Kansaneläkelaitos on Maalaisliiton tekele,
      Maailman menoa
      144
      4857
    2. Eikö tunnukin kamalalta, kun en

      anna periksi vaikka parhaasi olet tehnyt antaaksesi täystyrmäyksen? Ja kyllähän minä monta iskua olen saanut ja maannut
      Ikävä
      81
      3536
    3. SDP on selvästi paras valinta äänestyskopissa

      Puolueella on arvomaailma kohdallaan, sillä on hyvä CV itsenäisen Suomen historiassa vastuunkantajana ja hyvinvointivalt
      Maailman menoa
      31
      2544
    4. SDP:n selitykset ontuu pahasti - "On käsitelty heti, mutta kukaan ei tiedä"

      Kokoomuslaiset pistää taas demareita nippuun. Tuppuraisen mukaan mukaan SDP:n useat ahdistelutapaukset on käsitelty het
      Maailman menoa
      40
      2223
    5. Kenen juontajan pitäisi voittaa tänään Kultainen Venla? Ehdolla Pimiä, Holma ja Vaaherkumpu

      Kultainen Venla gaalassa jaetaan tänään tv-alan palkintoja. Yksi suosituimmista kategorioista on Juontaja. Vappu Pimiä
      Suomalaiset julkkikset
      62
      2053
    6. Antti Lindtman: "Ainahan kaikenlaisia huhuja liikkuu"

      Näin hän siis vastaa SDP:n häirintäkohuun, väistelee vastuutaan Juttuhan on niin, että Lindtman ja Tuppurainen on tasan
      Maailman menoa
      63
      2013
    7. Oletko nainen turhautunut, kun en tule juttelemaan siellä?

      Haluaisin tottakai tulla. Älä käsitä väärin. Ehkä ensi kerralla?
      Ikävä
      23
      1981
    8. Mitä saa sanoa?

      Palstalla tänään sanottua: ” Kaikki riippuu siitä, miten asian esittää,” Onko siis niin, että saa muita pomottaa ja
      80 plus
      85
      1973
    9. Onko olemassa miehiä, jotka haluavat yhteydenpitoa?

      Silloin tällöin viestiä, puntarointeja arkielämästä, ikäänkuin pientä viihdettä ilman sen kummallisempaa. Tällaista miet
      Sinkut
      19
      1458
    10. Mitä Trump itse pitäisi siitä, jos häntä solvattaisiin

      Kuten hän solvasi muita mm. Macronia? Kyllä ei huumori enää kukkisi. White house on nykyään pelkkä vitsi vain, ei mitään
      Maailman menoa
      99
      1262
    Aihe