Binäärijonojen ykkösputket

Väritetään n:n peräkkäisen ruudun rivistä osa mustiksi ja lasketaan millaiset putket väritettyjä tuli. Esim (1=väritetty, 0=tyhjä):

0110010111 ---> [2, 1, 3]

Kutsutaan tätä putkien pituuksista koottua vektoria värityksen putkityypiksi.

a) Kuinka monta erilaista putkityyppiä voidaan n:n ruudun rivistä muodostaa?
b) Olkoon rivin pituus n. Kuinka moni eri väritys tuottaa putkityypin [k1, k2, ..., k_m]?

6

70

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Joo. Kaljalla on ihmeitä tekevä voima.

    • Kutsutaan putkityyppiä (ja väritystä) maksimaaliseksi, jos siinä mitään putkea ei voi pidentää yhdistämättä putkia.
      Esim. 11011101 on maksimaalinen, mutta 10011 ei ole, sillä se voidaan pidentää 10111:ksi tai 11011.
      Toisin sanoen jokaisen putken välissä on tasan yksi tyhjä ja päissä ei ole tyhjiä. Tämä voidaan putkityypille [k1, k2,..., km] myös ilmaista yhtälöllä

      m - 1 k1 k2 ... km = n

      Olkoon n edelleen rivin pituus. Valitaan putkityyppi satunnaisesti. Huom! ei siis väritystä vaan valitaan mahdollisten putkityyppien tasajakaumasta. Kysymys kuuluu:

      c) Mikä on todennäköisyys että tyyppi on maksimaalinen? Mitä lukua tämä lähenee, kun n menee äärettömään?

      Otetaan sitten väritysten tasajakauma ja kysytään:

      d) Mikä on värityksen pisimmän putken odotusarvo.

      Voidaanhan tämä toki kysyä myös putkityyppien tasajakaumalle:

      e) Mikä on putkityypin (valitaan mahdollisten putkityyppien tasajakaumasta) suurimman alkion odotusarvo?

      • Anonyymi

        Älä ota enää!


    • Anonyymi

      a) Määrät saadaan erittäin monikäyttöisestä sarjasta: https://oeis.org/A000071
      (Ekaa nollaa lukuunottamatta?)

      n
      0: 0
      1: 1
      2: 2
      3: 4
      4: 7
      5: 12
      6: 20
      7: 33
      8: 54
      9: 88
      10: 143
      11: 232
      12: 376
      13: 609
      14: 986
      15: 1596
      16: 2583
      17: 4180
      18: 6764
      19: 10945
      20: 17710

      • Joo, itse asiassa ykköstäkään ei tarvitse vähentää, kun ottaa mukaan myös tyhjän putkityypin [] (ja onhan se mukaan otettava, sillä se tulee tyhjästä värityksestä 00...0).
        Esim. n=1:lle on kaksi kappaletta [] ja [1]. Ja nollalla vain [] eli yksi kappale, eli sekin toimii.

        Tässä kuinka minä sen alunperin laskin: https://membolicsythod.home.blog/2019/12/10/binaariblokit/
        Mutta rekursion noille kysytyille lukumäärille (tuolla merkitty a_n) näkee myös ilman b_n:iä ja graafeja/automaatteja näin:

        Olkoon rivin pituus n 1. Lasketaan mahdolliset putkityypit kahdessa osassa: ensin sellaiset, joiden ensimmäinen alkio on 1 ja sitten sellaiset, joiden ensimmäinen alkio > 1. Ensimmäisessä tapauksessa loppu putkityyppi [k_2, ... , k_m] on sellainen joka mahtuu n-2:n pituiseen riviin (koska käytetään korkeintaan 2 ruutua: se yksi väritetty ja sen oikealla puolella oleva pakollinen tyhjä). Jälkimmäisessä tapauksessa putkityyppi [k_1-1, k_2, ..., k_m] on sellainen joka mahtuu n-1:n ruudun riviin (vain yksi väritetty poistetaan alusta).
        Jokainen putkityyppi saadaan jommasta kummasta tapauksesta ja kaikki näin muodostetut ovat eri vektoreita, joten haluttu Fibonacci-rekursio on todistettu ja riittää tutkia alkuehdot, mikä jo tehtiinkin.


      • minkkilaukku kirjoitti:

        Joo, itse asiassa ykköstäkään ei tarvitse vähentää, kun ottaa mukaan myös tyhjän putkityypin [] (ja onhan se mukaan otettava, sillä se tulee tyhjästä värityksestä 00...0).
        Esim. n=1:lle on kaksi kappaletta [] ja [1]. Ja nollalla vain [] eli yksi kappale, eli sekin toimii.

        Tässä kuinka minä sen alunperin laskin: https://membolicsythod.home.blog/2019/12/10/binaariblokit/
        Mutta rekursion noille kysytyille lukumäärille (tuolla merkitty a_n) näkee myös ilman b_n:iä ja graafeja/automaatteja näin:

        Olkoon rivin pituus n 1. Lasketaan mahdolliset putkityypit kahdessa osassa: ensin sellaiset, joiden ensimmäinen alkio on 1 ja sitten sellaiset, joiden ensimmäinen alkio > 1. Ensimmäisessä tapauksessa loppu putkityyppi [k_2, ... , k_m] on sellainen joka mahtuu n-2:n pituiseen riviin (koska käytetään korkeintaan 2 ruutua: se yksi väritetty ja sen oikealla puolella oleva pakollinen tyhjä). Jälkimmäisessä tapauksessa putkityyppi [k_1-1, k_2, ..., k_m] on sellainen joka mahtuu n-1:n ruudun riviin (vain yksi väritetty poistetaan alusta).
        Jokainen putkityyppi saadaan jommasta kummasta tapauksesta ja kaikki näin muodostetut ovat eri vektoreita, joten haluttu Fibonacci-rekursio on todistettu ja riittää tutkia alkuehdot, mikä jo tehtiinkin.

        Ai niin nyt unohtu itseltänikin se tyhjä putkityyppi tuossa todistuksessa, kun oletin, että sillä on ensimmäinen alkio! Se voidaan ottaa mukaan jälkimmäiseen kategoriaan (ja sovitaan, että jos ensimmäinen alkio on olemassa vähennetään siitä 1). Esim. kun n=4 niin ne menee näin

        n=2:lle putkityypit ovat: {[], [1], [2]}
        n=3:lle putkityypit ovat: {[], [1], [2], [3], [1,1]}

        {[], [1], [2], [3], [4] [1,1], [1,2], [2,1] }
        = {[1], [1, 1], [1, 2]} U {[], [1 1], [2 1], [3 1], [1 1,1]}
        = "n=2:lle ykkönen lisätty vektorin alkuun" U "n=3:lle lisätty ykkönen vektorin ensimmäiseen komponenttiin, mikäli olemassa".


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Persujen mukaan rasismi on huumoria

      Vaan kun koomikko kutsui Halla-ahoa fasistiksi, niin piti haastaa oikeuteen. Mihin se huumorinitaju yhtäkkiä hävisi? ⠀
      Maailman menoa
      222
      6286
    2. Rasismia kaikkialla näkevät ovat Suomen tyhmimpiä ihmisiä

      ja monillahan kuluu myös mielialalääkkeitä, eli päässä on ongelmia. Mutta he eivät tajua kuinka paljon ja ihan todellis
      Maailman menoa
      187
      5856
    3. Ei kahta sanaa etteikö Petteri Orpo hyväksy rasismia

      Koska jatkaa hallituksessa rasistisen perussuomalaisiksi itseään kutsuvan puolueen kanssa. Se on Petteri Orpon arvomaai
      Maailman menoa
      15
      5444
    4. Mitkäs nuorisoporukat ovat toisia nuoria ryöstelleet (selvää rassismia)

      No poliisi kertoo, että maahanmuuttajataustaisia ovat, ja isot porukat sillä yhden suomalaisen uhrin kimpussa on ollut j
      Maailman menoa
      74
      4124
    5. Hallitus on kaadettava ja Orpon on erottava

      Mikään muu hallitus ei ole oman elämäni aikana tuhonnut näin paljon tämän maan taloutta ja työllisyyttä sekä suomen main
      Maailman menoa
      139
      3472
    6. Lasse Lehtonen vaatii persuja pyytämään anteeksi aasialaisilta

      Persut ova romahduttaneet Suomen maakuvan parissa päivässä negatiiviseksi rasismillaan ja se alkaa vaikuttamaan jo Suome
      Maailman menoa
      130
      3303
    7. HS 12/25 kysely: persut romahti, demarit raketoi

      Kyyti on kylmää persuleirissä, saattaa vetää siellä silmätkin viirulleen. Sen sijaan SDP:n puoluetoimistolla voidaan pok
      Maailman menoa
      21
      2996
    8. Töppö-persut ovat todella tyhmiä

      sen kertoo tämäkin avaus: "Persujen suosio vain laskee" Töppö-persu vaan unohtaa, että ennen tätä galluppia persujen kan
      Maailman menoa
      6
      2467
    9. Rasismi rapauttaa Suomen mainetta ja hallituksen hiljaisuus pahentaa vahinkoa

      Finnairin viesti Japanista on pysäyttävä: suomalaisen politiikan rasismikohut heijastuvat suoraan matkustuspäätöksiin ja
      Maailman menoa
      240
      2351
    10. Lasse Lehtonen palasi ambulanssilennolla Suomeen

      Nyt on syytä lopettaa irvailu.
      Maailman menoa
      130
      2234
    Aihe