Binäärijonojen ykkösputket

Väritetään n:n peräkkäisen ruudun rivistä osa mustiksi ja lasketaan millaiset putket väritettyjä tuli. Esim (1=väritetty, 0=tyhjä):

0110010111 ---> [2, 1, 3]

Kutsutaan tätä putkien pituuksista koottua vektoria värityksen putkityypiksi.

a) Kuinka monta erilaista putkityyppiä voidaan n:n ruudun rivistä muodostaa?
b) Olkoon rivin pituus n. Kuinka moni eri väritys tuottaa putkityypin [k1, k2, ..., k_m]?

6

74

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Joo. Kaljalla on ihmeitä tekevä voima.

    • Kutsutaan putkityyppiä (ja väritystä) maksimaaliseksi, jos siinä mitään putkea ei voi pidentää yhdistämättä putkia.
      Esim. 11011101 on maksimaalinen, mutta 10011 ei ole, sillä se voidaan pidentää 10111:ksi tai 11011.
      Toisin sanoen jokaisen putken välissä on tasan yksi tyhjä ja päissä ei ole tyhjiä. Tämä voidaan putkityypille [k1, k2,..., km] myös ilmaista yhtälöllä

      m - 1 k1 k2 ... km = n

      Olkoon n edelleen rivin pituus. Valitaan putkityyppi satunnaisesti. Huom! ei siis väritystä vaan valitaan mahdollisten putkityyppien tasajakaumasta. Kysymys kuuluu:

      c) Mikä on todennäköisyys että tyyppi on maksimaalinen? Mitä lukua tämä lähenee, kun n menee äärettömään?

      Otetaan sitten väritysten tasajakauma ja kysytään:

      d) Mikä on värityksen pisimmän putken odotusarvo.

      Voidaanhan tämä toki kysyä myös putkityyppien tasajakaumalle:

      e) Mikä on putkityypin (valitaan mahdollisten putkityyppien tasajakaumasta) suurimman alkion odotusarvo?

      • Anonyymi

        Älä ota enää!


    • Anonyymi

      a) Määrät saadaan erittäin monikäyttöisestä sarjasta: https://oeis.org/A000071
      (Ekaa nollaa lukuunottamatta?)

      n
      0: 0
      1: 1
      2: 2
      3: 4
      4: 7
      5: 12
      6: 20
      7: 33
      8: 54
      9: 88
      10: 143
      11: 232
      12: 376
      13: 609
      14: 986
      15: 1596
      16: 2583
      17: 4180
      18: 6764
      19: 10945
      20: 17710

      • Joo, itse asiassa ykköstäkään ei tarvitse vähentää, kun ottaa mukaan myös tyhjän putkityypin [] (ja onhan se mukaan otettava, sillä se tulee tyhjästä värityksestä 00...0).
        Esim. n=1:lle on kaksi kappaletta [] ja [1]. Ja nollalla vain [] eli yksi kappale, eli sekin toimii.

        Tässä kuinka minä sen alunperin laskin: https://membolicsythod.home.blog/2019/12/10/binaariblokit/
        Mutta rekursion noille kysytyille lukumäärille (tuolla merkitty a_n) näkee myös ilman b_n:iä ja graafeja/automaatteja näin:

        Olkoon rivin pituus n 1. Lasketaan mahdolliset putkityypit kahdessa osassa: ensin sellaiset, joiden ensimmäinen alkio on 1 ja sitten sellaiset, joiden ensimmäinen alkio > 1. Ensimmäisessä tapauksessa loppu putkityyppi [k_2, ... , k_m] on sellainen joka mahtuu n-2:n pituiseen riviin (koska käytetään korkeintaan 2 ruutua: se yksi väritetty ja sen oikealla puolella oleva pakollinen tyhjä). Jälkimmäisessä tapauksessa putkityyppi [k_1-1, k_2, ..., k_m] on sellainen joka mahtuu n-1:n ruudun riviin (vain yksi väritetty poistetaan alusta).
        Jokainen putkityyppi saadaan jommasta kummasta tapauksesta ja kaikki näin muodostetut ovat eri vektoreita, joten haluttu Fibonacci-rekursio on todistettu ja riittää tutkia alkuehdot, mikä jo tehtiinkin.


      • minkkilaukku kirjoitti:

        Joo, itse asiassa ykköstäkään ei tarvitse vähentää, kun ottaa mukaan myös tyhjän putkityypin [] (ja onhan se mukaan otettava, sillä se tulee tyhjästä värityksestä 00...0).
        Esim. n=1:lle on kaksi kappaletta [] ja [1]. Ja nollalla vain [] eli yksi kappale, eli sekin toimii.

        Tässä kuinka minä sen alunperin laskin: https://membolicsythod.home.blog/2019/12/10/binaariblokit/
        Mutta rekursion noille kysytyille lukumäärille (tuolla merkitty a_n) näkee myös ilman b_n:iä ja graafeja/automaatteja näin:

        Olkoon rivin pituus n 1. Lasketaan mahdolliset putkityypit kahdessa osassa: ensin sellaiset, joiden ensimmäinen alkio on 1 ja sitten sellaiset, joiden ensimmäinen alkio > 1. Ensimmäisessä tapauksessa loppu putkityyppi [k_2, ... , k_m] on sellainen joka mahtuu n-2:n pituiseen riviin (koska käytetään korkeintaan 2 ruutua: se yksi väritetty ja sen oikealla puolella oleva pakollinen tyhjä). Jälkimmäisessä tapauksessa putkityyppi [k_1-1, k_2, ..., k_m] on sellainen joka mahtuu n-1:n ruudun riviin (vain yksi väritetty poistetaan alusta).
        Jokainen putkityyppi saadaan jommasta kummasta tapauksesta ja kaikki näin muodostetut ovat eri vektoreita, joten haluttu Fibonacci-rekursio on todistettu ja riittää tutkia alkuehdot, mikä jo tehtiinkin.

        Ai niin nyt unohtu itseltänikin se tyhjä putkityyppi tuossa todistuksessa, kun oletin, että sillä on ensimmäinen alkio! Se voidaan ottaa mukaan jälkimmäiseen kategoriaan (ja sovitaan, että jos ensimmäinen alkio on olemassa vähennetään siitä 1). Esim. kun n=4 niin ne menee näin

        n=2:lle putkityypit ovat: {[], [1], [2]}
        n=3:lle putkityypit ovat: {[], [1], [2], [3], [1,1]}

        {[], [1], [2], [3], [4] [1,1], [1,2], [2,1] }
        = {[1], [1, 1], [1, 2]} U {[], [1 1], [2 1], [3 1], [1 1,1]}
        = "n=2:lle ykkönen lisätty vektorin alkuun" U "n=3:lle lisätty ykkönen vektorin ensimmäiseen komponenttiin, mikäli olemassa".


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Nyt tuli Suomen somaleista todella ikävää faktaa

      sillä osa somalivanhemmista lähettää lapsiaan kotimaahansa kurinpitolaitoksiin, joissa heitä pahoinpidellään. Illan MOT
      Maailman menoa
      364
      4301
    2. Häirintäkohun keskellä olevalta kansanedustajalta Jani Kokolta (sd) rajua tekstiä somessa.

      https://www.is.fi/politiikka/art-2000011772322.html Ajaakohan tämä SDP:n kansanedustaja Jani Kokko oikein täysillä valoi
      Maailman menoa
      146
      3745
    3. KATASTROFI - Tytti Tuppurainen itse yksi pahimmista kiusaajista!!!

      STT:n lähteiden mukaan SDP:n eduskuntaryhmän puheenjohtaja Tytti Tuppurainen on käyttäytynyt toistuvasti epäasiallisesti
      Maailman menoa
      91
      2634
    4. Kommentti: oikeuslaitos korvattava SDP:n johdolla

      Näkisin että Suomessa tuomiovalta pitäisi olla demareiden johtoportaalla. Koska porvarimedia säestettynä persujen kirku
      Maailman menoa
      9
      2421
    5. Mikä siinä on ettei persuille leikkaukset käy?

      On esitetty leikkauksia mm. haitallisiin maataloustukiin, kuin myös muihin yritystukiin. Säästöjä saataisiin lisäksi lei
      Maailman menoa
      15
      2249
    6. Lindtman haluaa leikata Kela-korvauksista...oho!

      Antti Lindtman sanoo Kauppalehdessä, että vuodesta 2028 voi tulla erittäin hankala, mikäli nykyinen hallitus ei tee riit
      Maailman menoa
      152
      1910
    7. Huono päivä

      Tänään on ollut tosi raskas päivä töissä. Tekis mieli itkeä ja huutaa. En jaksa just nyt mitään. Minä niin haluaisin ja
      Ikävä
      18
      1828
    8. Onko kaivattusi spesiaali?

      Millä tavalla ja miten?
      Ikävä
      119
      1818
    9. Typeryyttä

      Se on kummallista, kun kaksi ihmistä tuntee selittämätöntä vetoa toisiinsa, mutta eivät vain pääse toistensa luokse. Mik
      Ikävä
      124
      1409
    10. Martina mukana erikoisjoukossa

      Huippurankka Erikoisjoukot-ohjelma jatkuu, Martina mukana. Kerrankin Martinalle hyvä ohjelma, hänellä on voimaa, sisua j
      Kotimaiset julkkisjuorut
      155
      1095
    Aihe