Jäin pohtimaan sitä neljän kopin, yhden ilmaisen seinän tehtävää. Muutetaan sitä siten, että täytyy rakentaa kaksi karsinaa eikä mitään valmiita seiniä ole annettu.
Siis tehtävänä on aidata kaksi aluetta eli karsinaa, joiden molempien ala on, sovitaan nyt 1, käyttäen mahdollisimman vähän aitaa. Karsinat voivat jakaa saman väliaidan, joten ratkaisu ei ole kaksi erillistä ympyrää (kuten yhdelle karsinalle ratkaisu olisi ympyrä).
Tein joitain kokeiluja mutta en vielä postaa niitä, niin jos joku löytää samoja, niin saadaan riippumattomat tulokset :D. Sanotaan nyt että jos laskelmani meni oikein niin paras piiri jonka sain on 6,4135. En tosin osaa todistaa olisko tuo sitten optimi.
Kai tällaista tehtävää on joku ennenkin pohtinut mutta en ole kyllä törmännyt eikä googlaamallakaan tahdo löytyä. Tietäsikö joku mitään lähdettä? Ännän karsinan yleistys??
Kaksi karsinaa
8
121
Vastaukset
No nyt selvisi tuolta vähän isomman maailman rattaista, että tämä onkin vaan toiselta nimeltään tuplakuplaongelma. Samalla tavalla kuin kaksi saippuakuplaa yhtyy, niin laitetaan ne ympyräkarsinat vierekkäin. Huomatkaa, että koko aitauksen ei tarvitse olla konveksi, vaan itse asiassa sen nurkat muodostavat 120 asteen tasajaon tuossa optimitilanteessa.
Tässä kuitenkin myös niitä aiempia kokeilujani: https://membolicsythod.home.blog/2019/12/28/kaksi-karsinaa/- Anonyymi
Minä tuota aamulla katselin ja pidin itsestään selvänä, että tuo ratkeaisi Lagrangen kertoimilla, mutta ei se mennytkään...
- Anonyymi
Mielenkiintoista! Nyt tiedämme, että olet katsellut ja että lasku ei sinulta onnistunut. Todella kaikkia varmaankin kiinnostava asia!
- Anonyymi
Anonyymi kirjoitti:
Mielenkiintoista! Nyt tiedämme, että olet katsellut ja että lasku ei sinulta onnistunut. Todella kaikkia varmaankin kiinnostava asia!
Sinä varmaan esität ongelmaan yleisen maksimointiratkaisun, jossa ei oleteta ratkaisugeometriasta muuta kuin ensimmäisen kertaluvun jatkuvuus?
Tulos kiinnostaisi ainakin minua. - Anonyymi
Anonyymi kirjoitti:
Sinä varmaan esität ongelmaan yleisen maksimointiratkaisun, jossa ei oleteta ratkaisugeometriasta muuta kuin ensimmäisen kertaluvun jatkuvuus?
Tulos kiinnostaisi ainakin minua.Mitä on "ensimmäisen kertaluvun jatkuvuus"? Entä toisen? n:nnen?
- Anonyymi
Anonyymi kirjoitti:
Sinä varmaan esität ongelmaan yleisen maksimointiratkaisun, jossa ei oleteta ratkaisugeometriasta muuta kuin ensimmäisen kertaluvun jatkuvuus?
Tulos kiinnostaisi ainakin minua.Tarkoittanet kai kuitenkin nollannen kertaluvun jatkuvuutta? Sellainen oli alin jatkuvuus edeltävissä ympyränkaariratkaisuissakin.
- Anonyymi
Anonyymi kirjoitti:
Tarkoittanet kai kuitenkin nollannen kertaluvun jatkuvuutta? Sellainen oli alin jatkuvuus edeltävissä ympyränkaariratkaisuissakin.
Mitähän se sitten on? Funktio voi olla jatkuva tai sitten jatkuvasti differentioituva eli C^1 tai n kertaa jatkuvasti differentioituva eli C^n tai C^(ääretön) tai C^omega Mutta useampikertaista tai nollakertaista jatkuvuutta en oikein tunnista..
- Anonyymi
Anonyymi kirjoitti:
Mitähän se sitten on? Funktio voi olla jatkuva tai sitten jatkuvasti differentioituva eli C^1 tai n kertaa jatkuvasti differentioituva eli C^n tai C^(ääretön) tai C^omega Mutta useampikertaista tai nollakertaista jatkuvuutta en oikein tunnista..
Piti sanomani, että parametrinen jatkuvuus:
https://people.eecs.berkeley.edu/~jfc/cs184f98/lec19/lec19.html
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Voitaisko olla kavereita?
Haluaisin aloittaa puhtaalta pöydältä sinun kanssasi, tabula rasa. Minä lopetan sinun perääsi haikailun, ja sitten sinäk274625Deodoranttiteollisuus
Annan ilmaisen vinkin. Kyseinen teollisuus voisi alkaa valmistaa kuolleen ruumiin hajua. Olisi varma hittituote, ainakin132998Rukoilimme Länsimuurilla 2000 vuoden jälkeen, Jumalamme oli antanut meille kaiken takaisin
Western Wall, In our Hands. 55th Para. https://www.youtube.com/watch?v=u4BJAppyCSo https://en.wikipedia.org/wiki/55th_141249Kerro kaivattusi
Jokin tapa/piirre mikä sinua viehättää ja mistä hän voisi myös tunnistaa itsensä.451035Oulaisten kaupunki tuomittiin maksamaan korvauksia
Mikäs juttu tämä on? Kaupunki syyllistänyt useamman vuoden koneyrittäjiä ja nyt tuomittu.231004PURRA TULEE !
Valtiovarainministeri Riika Purra, joka on lisäksi varapääministeri ja perussuomalaisten puheenjohtaja, tulee puoluesiht120824Onko MOT tulossa Ähtärin valtuuston kokoukseen?
Esityslistan mukaan Ähtärin kaupunginvaltuuston valtapuolueet aikovat maanantaina estää tilintarkastajan laatiman raport39807- 37774
- 110758
- 137697