Jäin pohtimaan sitä neljän kopin, yhden ilmaisen seinän tehtävää. Muutetaan sitä siten, että täytyy rakentaa kaksi karsinaa eikä mitään valmiita seiniä ole annettu.
Siis tehtävänä on aidata kaksi aluetta eli karsinaa, joiden molempien ala on, sovitaan nyt 1, käyttäen mahdollisimman vähän aitaa. Karsinat voivat jakaa saman väliaidan, joten ratkaisu ei ole kaksi erillistä ympyrää (kuten yhdelle karsinalle ratkaisu olisi ympyrä).
Tein joitain kokeiluja mutta en vielä postaa niitä, niin jos joku löytää samoja, niin saadaan riippumattomat tulokset :D. Sanotaan nyt että jos laskelmani meni oikein niin paras piiri jonka sain on 6,4135. En tosin osaa todistaa olisko tuo sitten optimi.
Kai tällaista tehtävää on joku ennenkin pohtinut mutta en ole kyllä törmännyt eikä googlaamallakaan tahdo löytyä. Tietäsikö joku mitään lähdettä? Ännän karsinan yleistys??
Kaksi karsinaa
8
129
Vastaukset
No nyt selvisi tuolta vähän isomman maailman rattaista, että tämä onkin vaan toiselta nimeltään tuplakuplaongelma. Samalla tavalla kuin kaksi saippuakuplaa yhtyy, niin laitetaan ne ympyräkarsinat vierekkäin. Huomatkaa, että koko aitauksen ei tarvitse olla konveksi, vaan itse asiassa sen nurkat muodostavat 120 asteen tasajaon tuossa optimitilanteessa.
Tässä kuitenkin myös niitä aiempia kokeilujani: https://membolicsythod.home.blog/2019/12/28/kaksi-karsinaa/- Anonyymi
Minä tuota aamulla katselin ja pidin itsestään selvänä, että tuo ratkeaisi Lagrangen kertoimilla, mutta ei se mennytkään...
- Anonyymi
Mielenkiintoista! Nyt tiedämme, että olet katsellut ja että lasku ei sinulta onnistunut. Todella kaikkia varmaankin kiinnostava asia!
- Anonyymi
Anonyymi kirjoitti:
Mielenkiintoista! Nyt tiedämme, että olet katsellut ja että lasku ei sinulta onnistunut. Todella kaikkia varmaankin kiinnostava asia!
Sinä varmaan esität ongelmaan yleisen maksimointiratkaisun, jossa ei oleteta ratkaisugeometriasta muuta kuin ensimmäisen kertaluvun jatkuvuus?
Tulos kiinnostaisi ainakin minua. - Anonyymi
Anonyymi kirjoitti:
Sinä varmaan esität ongelmaan yleisen maksimointiratkaisun, jossa ei oleteta ratkaisugeometriasta muuta kuin ensimmäisen kertaluvun jatkuvuus?
Tulos kiinnostaisi ainakin minua.Mitä on "ensimmäisen kertaluvun jatkuvuus"? Entä toisen? n:nnen?
- Anonyymi
Anonyymi kirjoitti:
Sinä varmaan esität ongelmaan yleisen maksimointiratkaisun, jossa ei oleteta ratkaisugeometriasta muuta kuin ensimmäisen kertaluvun jatkuvuus?
Tulos kiinnostaisi ainakin minua.Tarkoittanet kai kuitenkin nollannen kertaluvun jatkuvuutta? Sellainen oli alin jatkuvuus edeltävissä ympyränkaariratkaisuissakin.
- Anonyymi
Anonyymi kirjoitti:
Tarkoittanet kai kuitenkin nollannen kertaluvun jatkuvuutta? Sellainen oli alin jatkuvuus edeltävissä ympyränkaariratkaisuissakin.
Mitähän se sitten on? Funktio voi olla jatkuva tai sitten jatkuvasti differentioituva eli C^1 tai n kertaa jatkuvasti differentioituva eli C^n tai C^(ääretön) tai C^omega Mutta useampikertaista tai nollakertaista jatkuvuutta en oikein tunnista..
- Anonyymi
Anonyymi kirjoitti:
Mitähän se sitten on? Funktio voi olla jatkuva tai sitten jatkuvasti differentioituva eli C^1 tai n kertaa jatkuvasti differentioituva eli C^n tai C^(ääretön) tai C^omega Mutta useampikertaista tai nollakertaista jatkuvuutta en oikein tunnista..
Piti sanomani, että parametrinen jatkuvuus:
https://people.eecs.berkeley.edu/~jfc/cs184f98/lec19/lec19.html
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Useita puukotettu Tampereella
Mikäs homma tämä nyt taas on? "Useaa henkilöä on puukotettu Tampereen keskustassa kauppakeskus Ratinan lähistöllä." ht1492852Asiakas iski kaupassa varastelua tehneen kanveesiin.
https://www.iltalehti.fi/kotimaa/a/33a85463-e4d5-45ed-8014-db51fe8079ec Oikein. Näin sitä pitää. Kyllä kaupoissa valtava3652030- 401757
Kuka rääkkää eläimiä Puolangalla?
Poliisi ampui toistakymmentä nälkiintynyttä eläintä Puolangalla Tilalta oli ollut karkuteillä lähes viisikymmentä nälkii351698Meneeköhän sulla
oikeasti pinnan alla yhtä huonosti kuin mulla? Tai yhtä huonosti mutta jollain eri tyylillä? Ei olisi pitänyt jättää sua321401Jos ei tiedä mitä toisesta haluaa
Älä missään nimessä anna mitään merkkejä kiinnostuksesta. Ole haluamatta mitään. Täytyy ajatella toistakin. Ei kukaan em941213- 541173
Muutama kysymys ja huomio hindulaisesta kulttuurista.
Vedakirjoituksia pidetään historiallisina teksteinä, ei siis "julistuksena" kuten esimerkiksi Raamattua, vaan kuten koul327949Jumala puhui minulle
Hän kertoi sinusta asioita, joiden takia jaksan, uskon ja luotan. Hän kuvaili sinua minulle ja pakahduin onnesta kuulles110938Annan meille mahdollisuuden
Olen avoimin mielin ja katson miten asiat etenevät. Mutta tällä kertaa sun on tehtävä eka siirto.Sen jälkeen olen täysil53782