Osoita, että A ∪ Bd(A) = Int(A) ∪ Bd(A). Koska A sisältää aina sisäpisteensä, toinen inkluusioista on triviaali. Inkluusion A ∪ Bd(A) ⊂ Int(A) ∪ Bd(A) olen todistanut seuraavasti:
olk. x ∈ A ∪ Bd(A). Tällöin x ∈ A tai x ∈ Bd(A). Mikäli x ei kuulu joukon A reunapisteisiin, se kuuluu välttämättä joukon A sisäpisteisiin. Siis x ∈ Int(A) tai x ∈ Bd(A). Tämä todistaisi, että A ∪ Bd(A) ⊂ Int(A) ∪ Bd(A).
Onko todistus riittävä?
inkluusion todistamisesta
7
81
Vastaukset
- Anonyymi
Entäpä jos x on A:n "isolated point" eli sillä on ympäristö jossa eiole muita A:n pisteitä kuin itse x. Se ei silloin ole A:n reunapiste. Näin ollen vaikka x ei ole A:n reunapiste se ei myöskään ole A:n sisäpiste.
Bd(A) = A:n sulkeuman ja X-A : n sulkeuman leikkaus (X on siis koko avaruus).
Int(A) ja Bd(A) ovat pistevieraita ja A:n sulkeuma on Int(A) U Bd(A)..Kuuluikos reunan määritelmään tuo, että "...muita kuin itse". Se taitaa olla kasautumispisteen määritelmä. Kyllä isoloidut pisteet ovat reunapisteitä.
- Anonyymi
minkkilaukku kirjoitti:
Kuuluikos reunan määritelmään tuo, että "...muita kuin itse". Se taitaa olla kasautumispisteen määritelmä. Kyllä isoloidut pisteet ovat reunapisteitä.
Pitää paikkansa.
Olkoon A:n sulkeuma S(A), komplementti C(A) ja A:n ja B:n leikkaus A&B
Määritelmä: Bd(A) = S(A) & S(C(A)). Siis Bd(A) = S(A) - Int(A). Isoloitu piste kuuluu kyllä joukkoon S(A) mutta ei ole A:n sisäpiste joten se on kyllä reunapiste.
Isoloitu piste x on sellainen että sillä on ympäristö joka ei sisällä muita A:n pisteitä kuin itsensä eli pisteen x.Mutta sillloin sillä on siis ympäristö joka sisältää sekä C(A):n pisteitä että A:n pisteitä, nimittäin tuon pisteen x, ja x on siis reunapiste.Vähän "subtle" juttu tämä.
Ja aloittajan todistelu on oikea.
Tuo
"x ei ole reunapiste => x on sisäpiste"
kannattaa vielä perustella ihan määritelmistä lähtien. Aika selvä hommahan se on, mutta näin perustavaalaatua olevassa tuohan siinä on niinkuin juuri se pääasia.
Eli jos lähdetään tuota todistamaan ja oletetaan että A:n piste x ei ole reunapiste. (Huom. niin tässähän voidaan olettaa, että x ∈ A). Reunapisteys tarkoittaa, että jokainen x:n ympäristö (eli x:n sisältävä avoin joukko) leikkaa A:n komplementtia. Eli ei-reunapisteys tarkoittaa, että on olemassa jokin avoin joukko joka ei... tässähän ollaan jo melkein maalissa.- Anonyymi
Tattista kommenteista.
- Anonyymi
Esitän tässä yhden todistuksen kysytystä asiasta. Lukeneeko aloittaja enää tätä?
Käytän samoja merkintöjä kuin aiemmissa jutuissa. Lisaäksi jo täällä aiemmin esiintynyt merkintä A ( B (A on B:n osajoukko). Toivottavasti ei sotketa merkintään C(A) joka tarkoittaa A:n komplementtia X - A.
Ensiksi apulause.
Int(A) = U (A(a) l A(a) ( A, A(a) avoin)
C(Int(A)) = & (C(A(a)) l C(A) ( C(A(a)) , C(A(a)) suljettu) = S(C(A))
Int(A) = C(S(C(A)))
Tuossa käytettiin sitä että jos A ( B niin C(B) ( C(A) ja sitä että C(C(A)) = A
Tästä seuraa muuten helposti toinenkin hauska seikka. Kun pannaan A:n tilalle C(A) saadaan
Int(C(A)) = C(S(C(C(A)))) = C(S(A)) joten
S(A) = C(Int((C(A))))
Nuo siis pätevät kaikille joukoille A.
Määritelmä: Bd(A) = S(A) & S(C(A))
A U Bd(A) = A U ( S(A) & S(C(A)) =
(A U S(A)) & (A U S(C(A))) =
S(A) & X = S(A) sillä A ( S(A) ja C(A) ( S(C(A))
jatkan seuraavalla kommentilla ennenkuin tämä häipyy...- Anonyymi
No niin...
Int(A) U Bd(A) = Int(A) U (S(A) & S(C(A))) = (Int(A) U S(A)) & (Int(A) U S(C(A))) =
S(A) & ( Int(A) U S(C(A))) = S(A) & (C(S(C(A))) U S(C(A))) = S(A) & X = S(A).
Siis: S(A) = A U Bd(A) = Int(A) U Bd(A)
MOT
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Orpo hiiri kadoksissa, Marin jo kommentoi
Kuinka on valtiojohto hukassa, kun vihollinen Grönlantia valloittaa? Putinisti Purra myös hiljaa kuin kusi sukassa.1176339Lopeta jo pelleily, tiedän kyllä mitä yrität mies
Et tule siinä onnistumaan. Tiedät kyllä, että tämä on just sulle. Sä et tule multa samaan minkäänlaista responssia, kosk3816167Nuori lapualainen nainen tapettu Tampereella?
Työmatkalainen havahtui erikoiseen näkyyn hotellin käytävällä Tampereella – tämä kaikki epäillystä hotellisurmasta tie696000Tampereen "empatiatalu" - "Harvoin näkee mitään näin kajahtanutta"
sanoo kokoomuslainen. Tampereen kaupunginvaltuuston maanantain kokouksessa käsiteltävä Tampereen uusi hyvinvointisuunni3443962Lidl teki sen mistä puhuin jo vuosikymmen sitten
Eli asiakkaat saavat nyt "skannata" ostoksensa keräilyvaiheessa omalla älypuhelimellaan, jolloin ei tarvitse mitään eril1452375Ukraina, unohtui korona - Grönlanti, unohtu Ukraina
Vinot silmät, unohtui Suomen valtiontalouden turmeleminen.42345Orpo pihalla kuin lumiukko
Onneksi pääministerimme ei ole ulkopolitiikassa päättäjiemme kärki. Hänellä on täysin lapsellisia luuloja Trumpin ja USA1191403- 121241
- 1861085
- 59887