Yleistetty sivun keskipisteen sivuava ympyrä

Säännöllisen n-kulmion sivun keskipisteen ja tämän sivun muodostavien kärkien vierekkäisten (sivusta ulospäin kumpaankin suuntaan seuraavien) kärkien kautta piirretään ympyrä.
Tämä kuva luultavasti auttaa hahmottamaan tilannetta: https://aijaa.com/fGuWtH

Tehtävä ei ole tarkasti rajattu, laskekaa tuosta mitä vain. Ehkä nyt se miten ympyrän säde r suhtautuu n-kulmion sivuun tulee ensimmäisenä mieleen.

[Tämä meni aluksi vahingossa väärälle palstalle, mutta laitetaan nyt tänne.]

8

142

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Tästä tuli mieleen eräs vanha tehtävä , jossa laskettiin ympyrän alaa, vaikka se nyt ei varsinaisesti tähän liitykään.

      Piirretään r-säteisen ympyrän sisään n kulmio. Sen keskuskulma on 360/n

      Piirretään ulkopuolelle 2*n kulmio. Sen keskuskulma on 180/n

      Ulkopuolelle piirretyn monikulmion ala=tan(90/n)*2n*r^2

      Sisäpuolelle piirretyn monikulmion ala=sin(180/n)*cos(180/n)*n*r^2

      jos noihin sijoittaa esim. n=1000, niin

      ulkoala on 3,141595*r^2
      sisäala on 3,14157*r^2 , ympyrän ala on siis noiden välissä

    • Anonyymi

      "Tehtävä ei ole tarkasti rajattu, laskekaa tuosta mitä vain."

      Oikea tarkasti rajattu vastaus on kolme koria kaljaa ja neljä pulloa kossua.

      • Anonyymi

        "Tuoppi olutta ja kortteli viinaa on sopiva mitta ja määrä väsyneen miehen kurkkuun ja päähän"
        kertoo A. Kivi teoksessaan "Seitsemän veljestä".


    • Anonyymi

      Lasketaan nyt tota viimestä, vaikka taitaa se edellinenkin mennä vastaavasti. Hiukan hankala laskettava ja siksi en edes yritä laskea sitä loppuun:
      https://aijaa.com/zrDR7U

    • Tässä visualisaatio, jossa n:ää voi säätä (tuosta pisteestä A voi vetää ja se säätää n:ää sitä kautta):

      https://www.desmos.com/calculator/oc3ofqu6da

      C on halutun ympyrän keskipiste, kun taas n-kulmio on origokeskinen ja jokainen kärki etäisyydellä 1 origosta.
      Olen tuossa jo käyttänyt kaava ympyrän säteelle r ja siellähän se on nähtävissä, mutta tässä myös todistus ja lisäksi lasku, että r --> 9/8, kun n --> ∞:

      https://aijaa.com/m4IMCX

      • Kokeilin myös sillä tavoin, että pisteet tulkitaan kompleksiluvuiksi ja sitten käytetään lausetta, että neljä pistettä ovat ympyrällä joss niiden kaksoissuhde on reaalinen, ks. https://math.stackexchange.com/questions/39153/how-do-i-calculate-the-equation-of-a-circle-given-3-complex-numbers .
        Nythän olisi
        z1 = cos(pi/n)
        z2 = cos(3*pi/n) i*sin(3*pi/n)
        z3 = cos(3*pi/n) - i*sin(3*pi/n)

        mutta kaavasta (että kaksoissuhteen imaginääriosa on 0) tulee sen verran sotkuinen, että en siitä kyllä nää miten saadaan ympyrän yhtälö selviteltyä. Tuolla SE-linkissähän olisi kyllä suora kaava keskipisteelle ja säteellekin, mutta vaikealta näyttää sitäkin kautta.


      • Anonyymi

        Tuli mieleen, että täytyyhän tuo raja-arvo tulla esiin noista minunkin yhtälöistäni, kun ne muutenkin antavat oikeita tuloksia, ja tuossa paperissa sitä on väännetty.
        Siinä vaan poikkeavat nuo merkinnät, eli tuossa ympyrän säde on 1 ja monikulmion "säde" on r, ja r lähenee silloin 8/9 kun kulma lähenee nollaa.
        https://aijaa.com/GMabSf


      • Anonyymi kirjoitti:

        Tuli mieleen, että täytyyhän tuo raja-arvo tulla esiin noista minunkin yhtälöistäni, kun ne muutenkin antavat oikeita tuloksia, ja tuossa paperissa sitä on väännetty.
        Siinä vaan poikkeavat nuo merkinnät, eli tuossa ympyrän säde on 1 ja monikulmion "säde" on r, ja r lähenee silloin 8/9 kun kulma lähenee nollaa.
        https://aijaa.com/GMabSf

        Tuohan onkin paljon simppelimpi tapa!
        Jos vielä yleistetään siten, että ympyrä leikkaakin m:nnsiä kärkiä sivun kärjistä lukien, niin sekinhän ratkeaa tuolla tavoin vain muuttamalla keskimmäisen kolmion kulmaa ja korvaamalla kaavassa arvon 3pi/n arvolla (2m 1)pi/n.
        Jos sitä alkuperäistä tehtävää eli neliötä miettii, niin ehkä siinä "olikin niin", että otetaan ne viimeiset kärjet eikä ensimmäisiä (neliöllähän ne on sama asia). Silloinhan ympyrä approksimoi erittäin hyvin n-kulmiota.

        Voisikin asettaa lisätehtävän: Mikä on ympyrän ja n-kulmion piirien suhde, kun ympyrä kulkee yhden sivun keskipisteen kautta ja tästä sivusta laskien viimeisten kärkien kautta (jos n pariton, niin viimeisen kärjen; sivun keskipisteen tangenteeraaminen määrä ympyrän täysin myös tässä tapauksessa).

        Tein tästä yleistyksestäkin vielä Desmos-simun: https://www.desmos.com/calculator/7scgg5gy5s


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Miksi sä valitsit

      Juuri minut sieltä?
      Ikävä
      75
      3577
    2. Kerro nyt rehellisesti fiilikset?

      Rehellinem fiilis
      Suhteet
      62
      2684
    3. Heilutetaanko peittoa hieman

      Heilutetaan peittoa vähän ;3
      Ikävä
      81
      2607
    4. Hei........

      Pelkkä sun näkeminen saa mut hymyilemään pitkin iltaa. Oot niin 🤩😘 Edellinen poistettiin.
      Ikävä
      58
      2408
    5. Mitä sanoa pituudeksi näillä mittaustuloksilla?

      Jos jossain tarttee ilmoittaa pituus sentin tarkkuudella? Mitattu neljästi virallisesti ja mittaustulokset on olleet 1
      Sinkut
      91
      2337
    6. Poliisi: Kymmenhenkinen pohjalaisperhe ollut vuoden kateissa kansainvälinen etsintäkuulutus Poliis

      Poliisi: Kymmenhenkinen pohjalaisperhe ollut vuoden kateissa – kansainvälinen etsintäkuulutus Poliisi pyytää yleisön apu
      Maailman menoa
      248
      2082
    7. Kaipaan sua, Ope

      Mietin, että ajatteletko sinä minua?..
      Ikävä
      43
      1902
    8. Tilanteesi nyt?

      Kysymys otsikossa
      Suhteet
      44
      1759
    9. Mä en jaksa suojella sua enää

      Oot osa mun tarinaa ja ensirakkaus 🩷🌈 Olisiko niin kauheata, jos muutkin ystävämme tietäisivät? Se on jo niin vanha ”t
      Ikävä
      15
      1471
    10. EU:n uusin idea - jatkossa joudut tunnistautumaan kun katsot PORNOA!

      "Pornon katsominen muuttuu täysin Euroopan komissio on kehittänyt sovelluksen, jolla internetin käyttäjä voi todistaa p
      Maailman menoa
      149
      1408
    Aihe