Yleistetty sivun keskipisteen sivuava ympyrä

Säännöllisen n-kulmion sivun keskipisteen ja tämän sivun muodostavien kärkien vierekkäisten (sivusta ulospäin kumpaankin suuntaan seuraavien) kärkien kautta piirretään ympyrä.
Tämä kuva luultavasti auttaa hahmottamaan tilannetta: https://aijaa.com/fGuWtH

Tehtävä ei ole tarkasti rajattu, laskekaa tuosta mitä vain. Ehkä nyt se miten ympyrän säde r suhtautuu n-kulmion sivuun tulee ensimmäisenä mieleen.

[Tämä meni aluksi vahingossa väärälle palstalle, mutta laitetaan nyt tänne.]

8

168

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      Tästä tuli mieleen eräs vanha tehtävä , jossa laskettiin ympyrän alaa, vaikka se nyt ei varsinaisesti tähän liitykään.

      Piirretään r-säteisen ympyrän sisään n kulmio. Sen keskuskulma on 360/n

      Piirretään ulkopuolelle 2*n kulmio. Sen keskuskulma on 180/n

      Ulkopuolelle piirretyn monikulmion ala=tan(90/n)*2n*r^2

      Sisäpuolelle piirretyn monikulmion ala=sin(180/n)*cos(180/n)*n*r^2

      jos noihin sijoittaa esim. n=1000, niin

      ulkoala on 3,141595*r^2
      sisäala on 3,14157*r^2 , ympyrän ala on siis noiden välissä

    • Anonyymi

      "Tehtävä ei ole tarkasti rajattu, laskekaa tuosta mitä vain."

      Oikea tarkasti rajattu vastaus on kolme koria kaljaa ja neljä pulloa kossua.

      • Anonyymi

        "Tuoppi olutta ja kortteli viinaa on sopiva mitta ja määrä väsyneen miehen kurkkuun ja päähän"
        kertoo A. Kivi teoksessaan "Seitsemän veljestä".


    • Anonyymi

      Lasketaan nyt tota viimestä, vaikka taitaa se edellinenkin mennä vastaavasti. Hiukan hankala laskettava ja siksi en edes yritä laskea sitä loppuun:
      https://aijaa.com/zrDR7U

    • Tässä visualisaatio, jossa n:ää voi säätä (tuosta pisteestä A voi vetää ja se säätää n:ää sitä kautta):

      https://www.desmos.com/calculator/oc3ofqu6da

      C on halutun ympyrän keskipiste, kun taas n-kulmio on origokeskinen ja jokainen kärki etäisyydellä 1 origosta.
      Olen tuossa jo käyttänyt kaava ympyrän säteelle r ja siellähän se on nähtävissä, mutta tässä myös todistus ja lisäksi lasku, että r --> 9/8, kun n --> ∞:

      https://aijaa.com/m4IMCX

      • Kokeilin myös sillä tavoin, että pisteet tulkitaan kompleksiluvuiksi ja sitten käytetään lausetta, että neljä pistettä ovat ympyrällä joss niiden kaksoissuhde on reaalinen, ks. https://math.stackexchange.com/questions/39153/how-do-i-calculate-the-equation-of-a-circle-given-3-complex-numbers .
        Nythän olisi
        z1 = cos(pi/n)
        z2 = cos(3*pi/n) i*sin(3*pi/n)
        z3 = cos(3*pi/n) - i*sin(3*pi/n)

        mutta kaavasta (että kaksoissuhteen imaginääriosa on 0) tulee sen verran sotkuinen, että en siitä kyllä nää miten saadaan ympyrän yhtälö selviteltyä. Tuolla SE-linkissähän olisi kyllä suora kaava keskipisteelle ja säteellekin, mutta vaikealta näyttää sitäkin kautta.


      • Anonyymi

        Tuli mieleen, että täytyyhän tuo raja-arvo tulla esiin noista minunkin yhtälöistäni, kun ne muutenkin antavat oikeita tuloksia, ja tuossa paperissa sitä on väännetty.
        Siinä vaan poikkeavat nuo merkinnät, eli tuossa ympyrän säde on 1 ja monikulmion "säde" on r, ja r lähenee silloin 8/9 kun kulma lähenee nollaa.
        https://aijaa.com/GMabSf


      • Anonyymi kirjoitti:

        Tuli mieleen, että täytyyhän tuo raja-arvo tulla esiin noista minunkin yhtälöistäni, kun ne muutenkin antavat oikeita tuloksia, ja tuossa paperissa sitä on väännetty.
        Siinä vaan poikkeavat nuo merkinnät, eli tuossa ympyrän säde on 1 ja monikulmion "säde" on r, ja r lähenee silloin 8/9 kun kulma lähenee nollaa.
        https://aijaa.com/GMabSf

        Tuohan onkin paljon simppelimpi tapa!
        Jos vielä yleistetään siten, että ympyrä leikkaakin m:nnsiä kärkiä sivun kärjistä lukien, niin sekinhän ratkeaa tuolla tavoin vain muuttamalla keskimmäisen kolmion kulmaa ja korvaamalla kaavassa arvon 3pi/n arvolla (2m 1)pi/n.
        Jos sitä alkuperäistä tehtävää eli neliötä miettii, niin ehkä siinä "olikin niin", että otetaan ne viimeiset kärjet eikä ensimmäisiä (neliöllähän ne on sama asia). Silloinhan ympyrä approksimoi erittäin hyvin n-kulmiota.

        Voisikin asettaa lisätehtävän: Mikä on ympyrän ja n-kulmion piirien suhde, kun ympyrä kulkee yhden sivun keskipisteen kautta ja tästä sivusta laskien viimeisten kärkien kautta (jos n pariton, niin viimeisen kärjen; sivun keskipisteen tangenteeraaminen määrä ympyrän täysin myös tässä tapauksessa).

        Tein tästä yleistyksestäkin vielä Desmos-simun: https://www.desmos.com/calculator/7scgg5gy5s


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Oletko varattu minulle?

      Mieheltä kysyn.
      Ikävä
      159
      6279
    2. Mitä ensi viikolla tapahtuu?

      Mitä toivot, että ensi viikolla tapahtuu?
      Ikävä
      116
      5786
    3. Olen miettinyt kauan

      miten reagoisin, kun näen sinut taas. Ehkä ladannut tuohon hetkeen liikaa odotuksia. Ja sitten kun lopulta olit siinä, h
      Ikävä
      46
      5337
    4. Vanhempi mies

      Jos yritän ajatella sinut pois sydämestäni, ikävä ja surullinen kaipuu tulee kaksin verroin kovempana. Olit mun unessa
      Ikävä
      32
      3405
    5. Mitä Ajattelit Kun Näit Kaivattusi

      Ensimmäistä Kertaa?
      Ikävä
      55
      2949
    6. Ostiko maailma sinut minulta?

      Kun et enää resonoi kuin ennen. Kun et enää ihmetellen katso ympärillesi ja pohdi mitä mäen takana on? Ymmärrän ja tue
      Ikävä
      25
      2661
    7. On niin paha olla

      Tarviin jotain jolla turruttaa... Kuka voi auttaa.
      Ikävä
      43
      2360
    8. Noloa että kaipasin sinua

      Toivottavasti et tunnistanut itseäsi. Ikävissään sitä on aika typerä.
      Ikävä
      25
      2290
    9. Minne sä aina välillä joudut

      Kun pitää hakemalla hakea sut sieltä ja sitten oot hetken aikaa esillä kunnes taas menet piiloon, en ymmärrä 🤔❤️ Oot ta
      Ikävä
      13
      2030
    10. On niin vaikea olla lähelläsi

      En saa ottaa kädestäsi kiinni, en saa halata. En saa silittää hiuksiasi. Enkä saa sinua koskaan omakseni. ☔ Miehelle na
      Ikävä
      15
      1901
    Aihe