segmentin korkeus

geometriaa

Pitäisi rakentaa kaareva katto, jonka poikkileikkaus vastaa ympyrän segmenttiä ja olisi määritettävä tukipisteiden korkeudet eri kohtiin siten, että katto muistuttaa mahdollisimman täydellisesti osaa ympyrän kehästä. Tukipisteiden paikat voidaan määrittää vapaasti, ja lienee paras jakaa ne yhtä suurille etäisyyksille keskenään.

Olkoon puolet segmentin jänteestä (reunalta korkeimmalle kohdalle) x. Ja segmentin korkeusjana puolestaan y. Mikä on y:n arvo kohdalla 1/2x?

14

3053

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • katsottuna

      segmentin korkeus on h = sqrt(R^2 - d^2) y - R ,
      missä ympyrän säde R = (x^2 y^2)/(2y) ja d < x on siirtymä sivulle päin

    • iso tarkka kuva

      paperille tai vaikkapa lattialle esim. suhteesa 1:5 tai 1:10. Siitä helppo mitata. Jos saat samoja tuloksia laskemalla, niin laskusi on melkoisella varmuudella oikein.

      • polynomifunktio

        eikös tämän ratkaisussa voi käyttää 2. asteen polynomifunktiota?

        Kaaren jänneväli on 6,5 metriä ja korkeus o,24m. Tiedämme siis funktion nollakohdat ja huipun. sijoittamalla sopivat x:n arvot saamme y-koordinaatit halutuista kohdista. Sitten pitää vain saada kaava kohdilleen, jossa minun matikkapääni loppuukin.


      • geometriaa
        polynomifunktio kirjoitti:

        eikös tämän ratkaisussa voi käyttää 2. asteen polynomifunktiota?

        Kaaren jänneväli on 6,5 metriä ja korkeus o,24m. Tiedämme siis funktion nollakohdat ja huipun. sijoittamalla sopivat x:n arvot saamme y-koordinaatit halutuista kohdista. Sitten pitää vain saada kaava kohdilleen, jossa minun matikkapääni loppuukin.

        Töissä asia hoideltiin siten, että menimme parkkipaikalle pitkän narun la liidun kanssa, kun mestari vätti numeerisen ratkaisun olevan mahdoton(mitä en kyllä ikipäivänä usko).


      • ratkoja
        geometriaa kirjoitti:

        Töissä asia hoideltiin siten, että menimme parkkipaikalle pitkän narun la liidun kanssa, kun mestari vätti numeerisen ratkaisun olevan mahdoton(mitä en kyllä ikipäivänä usko).

        Ensiksi voidaan lähtötiedoilla, että tunnetaan jänteen pituus L ja sen segmentin korkeus h laskea kaaren säde R Pythagoraan teoreeman avulla. Säteeksi saadaan

        R = (4 h^2 L^2)/(8 h).

        Sitten voidaan ympyrän parametriesityksen [x = R cos(t), y = R sin(t)] avulla ratkaista jänteen korkeus z vaakaetäisyyden x funktiona. Tulokseksi saadaan

        z = h R sqrt(1-x^2/R^2)-R,

        missä on huomattava, että origo on jänteen keskellä.

        Kun L = 6,5 m ja h = 0,24 m, niin R = 22,1252 m ja jänteen korkeus neljäsosa pituuden päässä jänteen keskeltä eli z(6,5/4) = 0,180245 m.

        Mitä lienee saatu piirtelemällä? Ainakin Wolfram Alpha laski näin.


      • esitys
        ratkoja kirjoitti:

        Ensiksi voidaan lähtötiedoilla, että tunnetaan jänteen pituus L ja sen segmentin korkeus h laskea kaaren säde R Pythagoraan teoreeman avulla. Säteeksi saadaan

        R = (4 h^2 L^2)/(8 h).

        Sitten voidaan ympyrän parametriesityksen [x = R cos(t), y = R sin(t)] avulla ratkaista jänteen korkeus z vaakaetäisyyden x funktiona. Tulokseksi saadaan

        z = h R sqrt(1-x^2/R^2)-R,

        missä on huomattava, että origo on jänteen keskellä.

        Kun L = 6,5 m ja h = 0,24 m, niin R = 22,1252 m ja jänteen korkeus neljäsosa pituuden päässä jänteen keskeltä eli z(6,5/4) = 0,180245 m.

        Mitä lienee saatu piirtelemällä? Ainakin Wolfram Alpha laski näin.

        kaavasta oli jo olemassa, johon sijoittamalla olisit voinut todeta saman


      • Anonyymi

        Eikös tuommoiset ole helpointa piirtää CAD:lla kaari, ja tolppien viivat paikoilleen. Siitä sitten voi ottaa mitat.


    • Anonyymi

      Mitrn tuolle segmentille muuten lasketaan pinta-ala, jos jänne ja korkeus vain tiedossa?

      • Anonyymi

      • Anonyymi

      • Anonyymi
        Anonyymi kirjoitti:

        Sori, alan kaavaan jäi virhe. Lasku oli kyllä oikein eli lukuarvo oikea mutta kaava näytettiin virheellisesti. Tässä korjattu: https://www.desmos.com/calculator/7i6oankvyr

        Mahtaneeko kysymyksen v. 2009 tehnyt lukea näitä vuoden 2023 sepustuksia?


      • Anonyymi
        Anonyymi kirjoitti:

        Mahtaneeko kysymyksen v. 2009 tehnyt lukea näitä vuoden 2023 sepustuksia?

        Vastaavia kattoja rakennetaan koko ajan.

        Naru on usein se paras ja nopein tapa, sillä laskelmat on joka tapauksessa aina tarkistettava joka vaiheessa työn aikana. Ei vasta betonin kuivuttua.


      • Anonyymi
        Anonyymi kirjoitti:

        Vastaavia kattoja rakennetaan koko ajan.

        Naru on usein se paras ja nopein tapa, sillä laskelmat on joka tapauksessa aina tarkistettava joka vaiheessa työn aikana. Ei vasta betonin kuivuttua.

        Matemaatikot voivat laskea, miten tiiliseinästä saa suoran joka suuntaan, mutta homma hoidetaan kuitenkin aina narulla tai rautalangalla.


    • Anonyymi

      Ympyrän yhtälö olkoon
      (1) x^2 plus y^2 = R^2.
      x-akselin suuntainen jänne joka leikkaa y-akselin pisteessä R-h on suoralla
      (2) y = R-h.
      Tällöin segmentin korkeus on h.
      Tuo suora (2) leikkaa ympyrän (1) pisteissä, missä y = R-h ja x = plus/- sqrt(2Rh-h^2).
      Ympyrän (1) pisteen (x,y) etäisyys jänteestä (tukipalkin pituus) on
      (3) s(x) = y - (R-h) = sqrt(R^2 - x^2) - (R-h)
      s(0) = h ja s((sqrt(2Rh- h^2)) = 0
      Kun - sqrt(2Rh-h^2) <= x <= sqrt(2Rh - h^2) saadaan s(x) kaavasta (3).

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Häiriköinti

      Sinä joka rälläsit viime yönä aamuun klo. 00 :04 koulun pihassa ja pitkin kyliä. Rekkari ylhäällä. Terv. Kerrostalon as
      Ähtäri
      59
      3166
    2. Askanmäessä Huippu esitys

      Kävimme Ystävien kanssa Askanmäen kesäteatterissa. Kaikki tykättiin esityksestä aivan valtavasti. En varmaan koko vuonna
      Puolanka
      23
      2964
    3. rakastan sinua!

      Tule ja ota, kasvetaan yhdessä paremmiksi ❤️❤️❤️❤️ kaikki anteeksi ❤️❤️❤️
      Ikävä
      51
      2852
    4. Näin lähellä

      Se on näin 🤏 lähellä että heitän hanskat tiskiin sun kanssasi.
      Ikävä
      56
      2658
    5. Mä sanon tän suoraan.

      Se on sun käytös mikä ajaa pois. Et välitä muitten tunteista kun omistasi.
      Ikävä
      58
      2548
    6. Kerro jotakin hauskaa. :)

      Kirjoita jotakin mukavaa vaikka kaivatustasi. :) Ei törkytekstejä kiitos. :)
      Ikävä
      48
      2530
    7. On olemassa tiettyjä sääntöjä!

      Ja jos aiot pärjätä mun kanssa niin teet vain niinkuin mä sanon. Mieheltä Naiselle
      Ikävä
      53
      2301
    8. Pohdinttavaksi

      No siis, saiko yrityksen toimitusjohtaja potkut vaiko älysi ihan itse jättää nimellisen tittelin ettei maine enää enempä
      Kotimaiset julkkisjuorut
      78
      2188
    9. Mulla ei oo anteeksi pyydettävää

      Muista se! Mieheltä yhdelle naisellE
      Ikävä
      69
      2078
    10. Siis hetkonen

      Rakastetaankohan me kummatkin toisiamme, ja aletaan tajuamaan se pikkuhiljaa 🤯
      Ikävä
      45
      2072
    Aihe