segmentin korkeus

geometriaa

Pitäisi rakentaa kaareva katto, jonka poikkileikkaus vastaa ympyrän segmenttiä ja olisi määritettävä tukipisteiden korkeudet eri kohtiin siten, että katto muistuttaa mahdollisimman täydellisesti osaa ympyrän kehästä. Tukipisteiden paikat voidaan määrittää vapaasti, ja lienee paras jakaa ne yhtä suurille etäisyyksille keskenään.

Olkoon puolet segmentin jänteestä (reunalta korkeimmalle kohdalle) x. Ja segmentin korkeusjana puolestaan y. Mikä on y:n arvo kohdalla 1/2x?

14

2893

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • katsottuna

      segmentin korkeus on h = sqrt(R^2 - d^2) y - R ,
      missä ympyrän säde R = (x^2 y^2)/(2y) ja d < x on siirtymä sivulle päin

    • iso tarkka kuva

      paperille tai vaikkapa lattialle esim. suhteesa 1:5 tai 1:10. Siitä helppo mitata. Jos saat samoja tuloksia laskemalla, niin laskusi on melkoisella varmuudella oikein.

      • polynomifunktio

        eikös tämän ratkaisussa voi käyttää 2. asteen polynomifunktiota?

        Kaaren jänneväli on 6,5 metriä ja korkeus o,24m. Tiedämme siis funktion nollakohdat ja huipun. sijoittamalla sopivat x:n arvot saamme y-koordinaatit halutuista kohdista. Sitten pitää vain saada kaava kohdilleen, jossa minun matikkapääni loppuukin.


      • geometriaa
        polynomifunktio kirjoitti:

        eikös tämän ratkaisussa voi käyttää 2. asteen polynomifunktiota?

        Kaaren jänneväli on 6,5 metriä ja korkeus o,24m. Tiedämme siis funktion nollakohdat ja huipun. sijoittamalla sopivat x:n arvot saamme y-koordinaatit halutuista kohdista. Sitten pitää vain saada kaava kohdilleen, jossa minun matikkapääni loppuukin.

        Töissä asia hoideltiin siten, että menimme parkkipaikalle pitkän narun la liidun kanssa, kun mestari vätti numeerisen ratkaisun olevan mahdoton(mitä en kyllä ikipäivänä usko).


      • ratkoja
        geometriaa kirjoitti:

        Töissä asia hoideltiin siten, että menimme parkkipaikalle pitkän narun la liidun kanssa, kun mestari vätti numeerisen ratkaisun olevan mahdoton(mitä en kyllä ikipäivänä usko).

        Ensiksi voidaan lähtötiedoilla, että tunnetaan jänteen pituus L ja sen segmentin korkeus h laskea kaaren säde R Pythagoraan teoreeman avulla. Säteeksi saadaan

        R = (4 h^2 L^2)/(8 h).

        Sitten voidaan ympyrän parametriesityksen [x = R cos(t), y = R sin(t)] avulla ratkaista jänteen korkeus z vaakaetäisyyden x funktiona. Tulokseksi saadaan

        z = h R sqrt(1-x^2/R^2)-R,

        missä on huomattava, että origo on jänteen keskellä.

        Kun L = 6,5 m ja h = 0,24 m, niin R = 22,1252 m ja jänteen korkeus neljäsosa pituuden päässä jänteen keskeltä eli z(6,5/4) = 0,180245 m.

        Mitä lienee saatu piirtelemällä? Ainakin Wolfram Alpha laski näin.


      • esitys
        ratkoja kirjoitti:

        Ensiksi voidaan lähtötiedoilla, että tunnetaan jänteen pituus L ja sen segmentin korkeus h laskea kaaren säde R Pythagoraan teoreeman avulla. Säteeksi saadaan

        R = (4 h^2 L^2)/(8 h).

        Sitten voidaan ympyrän parametriesityksen [x = R cos(t), y = R sin(t)] avulla ratkaista jänteen korkeus z vaakaetäisyyden x funktiona. Tulokseksi saadaan

        z = h R sqrt(1-x^2/R^2)-R,

        missä on huomattava, että origo on jänteen keskellä.

        Kun L = 6,5 m ja h = 0,24 m, niin R = 22,1252 m ja jänteen korkeus neljäsosa pituuden päässä jänteen keskeltä eli z(6,5/4) = 0,180245 m.

        Mitä lienee saatu piirtelemällä? Ainakin Wolfram Alpha laski näin.

        kaavasta oli jo olemassa, johon sijoittamalla olisit voinut todeta saman


      • Anonyymi

        Eikös tuommoiset ole helpointa piirtää CAD:lla kaari, ja tolppien viivat paikoilleen. Siitä sitten voi ottaa mitat.


    • Anonyymi

      Mitrn tuolle segmentille muuten lasketaan pinta-ala, jos jänne ja korkeus vain tiedossa?

      • Anonyymi

      • Anonyymi

      • Anonyymi
        Anonyymi kirjoitti:

        Sori, alan kaavaan jäi virhe. Lasku oli kyllä oikein eli lukuarvo oikea mutta kaava näytettiin virheellisesti. Tässä korjattu: https://www.desmos.com/calculator/7i6oankvyr

        Mahtaneeko kysymyksen v. 2009 tehnyt lukea näitä vuoden 2023 sepustuksia?


      • Anonyymi
        Anonyymi kirjoitti:

        Mahtaneeko kysymyksen v. 2009 tehnyt lukea näitä vuoden 2023 sepustuksia?

        Vastaavia kattoja rakennetaan koko ajan.

        Naru on usein se paras ja nopein tapa, sillä laskelmat on joka tapauksessa aina tarkistettava joka vaiheessa työn aikana. Ei vasta betonin kuivuttua.


      • Anonyymi
        Anonyymi kirjoitti:

        Vastaavia kattoja rakennetaan koko ajan.

        Naru on usein se paras ja nopein tapa, sillä laskelmat on joka tapauksessa aina tarkistettava joka vaiheessa työn aikana. Ei vasta betonin kuivuttua.

        Matemaatikot voivat laskea, miten tiiliseinästä saa suoran joka suuntaan, mutta homma hoidetaan kuitenkin aina narulla tai rautalangalla.


    • Anonyymi

      Ympyrän yhtälö olkoon
      (1) x^2 plus y^2 = R^2.
      x-akselin suuntainen jänne joka leikkaa y-akselin pisteessä R-h on suoralla
      (2) y = R-h.
      Tällöin segmentin korkeus on h.
      Tuo suora (2) leikkaa ympyrän (1) pisteissä, missä y = R-h ja x = plus/- sqrt(2Rh-h^2).
      Ympyrän (1) pisteen (x,y) etäisyys jänteestä (tukipalkin pituus) on
      (3) s(x) = y - (R-h) = sqrt(R^2 - x^2) - (R-h)
      s(0) = h ja s((sqrt(2Rh- h^2)) = 0
      Kun - sqrt(2Rh-h^2) <= x <= sqrt(2Rh - h^2) saadaan s(x) kaavasta (3).

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Janne Ahonen E R O A A

      Taas 2 lasta jää vaille ehjää perhettä!
      Kotimaiset julkkisjuorut
      172
      3570
    2. Tekisi niin mieli laittaa sulle viestiä

      En vaan ole varma ollaanko siihen vielä valmiita, vaikka halua löytyykin täältä suunnalta, ja ikävää, ja kaikkea muuta m
      Ikävä
      85
      1598
    3. Miksi ihmeessä?

      Erika Vikman diskattiin, ei osallistu Euroviisuihin – tilalle Gettomasa ja paluun tekevä Cheek
      Ateismi
      26
      1307
    4. Ootko huomannut miten

      pursuat joka puolelta. Sille joka luulee itsestään liikoja 🫵🙋🏻‍♂️
      Ikävä
      158
      1242
    5. Pitääkö penkeillä hypätä Martina?

      Eivätkö puistonpenkit ole istumista varten.Ei niitä kannata liata hyppäämällä koskaa likaantuvat eikä siellä kukaan niit
      Kotimaiset julkkisjuorut
      194
      1013
    6. Erika Vikman diskattiin, tilalle Gettomasa ja paluun tekevä Cheek

      Erika Vikman diskattiin, ei osallistu Euroviisuihin – tilalle Gettomasa ja paluun tekevä Cheek https://www.rumba.fi/uut
      Maailman menoa
      16
      983
    7. Kerropa ESA miten kävi tuomioiden

      Osaako ESA kertoa miten haukkumasi kunnanhallituksen kävi.
      Puolanka
      35
      981
    8. Kuinka kauan

      Olet ollut kaivattuusi ihastunut/rakastunut? Tajusitko tunteesi heti, vai syventyivätkö ne hitaasti?
      Ikävä
      63
      879
    9. Maikkarin tentti: Orpo jälleen rauhallinen ja erittäin hyvä, myös Purra oli hyvä

      Lindtman ja Kaikkonen oli kohtalaisia, sen sijaan punavihreät Koskela ja Virta olivat taas heikkoja. Ja vastustavat jalk
      Maailman menoa
      95
      829
    10. Se olisi ihan

      Napinpainalluksen päässä. Ei vaatisi paljon
      Ikävä
      62
      765
    Aihe