Käytössä on kirjaimet A, B, C, D, E ja F. Kuinka monta erilaista ’sanaa’ (lineaarista järjestystä) niistä voidaan muodostaa siten, että
a) Kirjaimet A ja B ovat vierekkäin.
b) A on ennen kirjainta B.
c) A on ennen kirjainta B ja B on ennen kirjainta C.
d) A on ennen kirjainta B ja C on ennen kirjainta D.
e) Kirjaimet A ja B ovat vierekkäin ja kirjaimet C ja D ovat myös vierkkäin.
f) Kirjain E ei ole
viimeisenä.
Miten ratkaisisitte kyseisen tehtävän kohdat?
Jonon muodostaminen, todennäköisyyslaskenta
7
482
Vastaukset
- epäselvätehtävä
Tuossa pitäisi varmaan tietää sanan maksimipituus. Muutenhan a)-kohtaan vastaus on ääretön, koska sanat voivat olla AB, ABA, ABAA, ABAAA jne. Vai oletetaanko, että sanan maksipituus on kuusi vai että sanan pituus on tasan kuusi?
- Avuton1234
Mä ymmärsin tehtävänannon siten että pituus on tasan kuusi mutta nyt kun tarkemmin lukee kommenttisi jälkeen niin voihan sen noinkin tottakai ajatella :D
- Ohman
Enpä tiedä minäkään mitä tehtävässä tarkoitetaan mutta jos oletan, että nuo jonot ovat jonon ABCDEF kaikki permutaatiot,joita on 6! kappaletta, niin ratkaisut ovat:
a) 2* 5*4! Osajonot AB ja BA voivat olla viidessä eri paikassa, loput 4 voivat olla missä järjestyksessä hyvänsä.
b) 5*4! 4*4! 3*4! 2*4! 1*4! = 15*4! A voi olla 1.,2.,3.,4. tai 5. jolloin B:llä on 5 ... 1 mahdollista paikkaa ja loput 4 voivat olla missä järjestyksessä tahansa.
c) , d) ja e) samaan tapaan. En nyt viitsi laskea, systeemin kai jo ymmärrät.
f) 6! - 5! = 5*5!
Ohman- Ohman
b-kohdan voi päätellä myös näin: jonoja on kaikkiaan 6! kappaletta ja puolet niistä ovat sellaisia joissa A on ennen B:tä eli näitä on 6!/2 = 3*5! = 15*4!
f-kohdan laskin siis kahdella eri tavalla jotka antavat saman tuloksen.Kasikkien jonojen määrästä vähennettiin ne joissa E on viimeisenä tai sitten laskettiin niin, että E voi olla viidessä paikassa ja loput 5 voivat olla 5! tavalla. Ja tietenkin ihan aritmeettisesti tuo yhtälö pitää paikkansa
- Kanootti3
Tässä omat pähkäilyt, joissa myös c- ja d-kohta ratkaistu:
Ilmeisesti tarkoitetaan kirjainten permutaatioita (järjestyksiä).
a) Kirjaimet A ja B ovat vierekkäin.
Ajattele että yhdistät A:n ja B:n yhdeksi "möykyksi" ja sitten tutkit järjestyksiä viidelle jutulle. Kerrotaan kahdella, koska "möykky" voi olla AB tai BA
Siis 5!*2 = 240 kpl
b) A on ennen kirjainta B.
Tämä on selvästi kaikki permutaatiot jaettuna kahdella, sillä joko A on ennen B:tä tai B ennen A:ta ja nämä tapaukset ovat symmetriset (vaihda A ja B; tämä operaatio on bijektiivinen ja muuttaa permutaation, jossa A on ennen B:tä sellaiseksi, jossa B on ennen A:ta ja kääntäen).
Siis 6!/2 = 360
c) A on ennen kirjainta B ja B on ennen kirjainta C.
A:n, B:n ja C:n keskinen permutaatio voi olla 3! -lainen. Näistä vain "ABC" kelpuutetaan ja siihen liittyy siis 6!/3! = 120 kokonaista kuuden kirjaimen permutaatiota (sillä jokaiseen A, B, C: n permutaatioon liittyy yhtä monta kaikkien kirjaimien permutaatiota). Sama idea oli oikeastaan b-kohdassa.
d) A on ennen kirjainta B ja C on ennen kirjainta D.
Tämän voisi tehdä vaikka todennäköisyyslaskennan avulla. Otetaan kuuden kirjaimen permutaatioille tasajakauma. Nuo tapaukset "A ennen B:tä" ja "C ennen D:tä" ovat toisistaan riippumattomat. Joten niiden leikkauksen todennäköisyys on todennäköisyyksien tulo ja toisaalta se on suotuisien tapauksien määrä jaettuna kaikkien permutaatioiden määrällä, siis jos merkataan suotuisien tapauksien määrää x:llä (tämä on kysytty lukumäärä), niin
(6!/2 / 6!) * (6!/2 / 6!) = x / 6!
x = 6! / 4 = 180
e) Kirjaimet A ja B ovat vierekkäin ja kirjaimet C ja D ovat myös vierekkäin.
Yhdistetään taas palikaksi, nyt tulee neljä juttua ({A, B}, {C, D}, E ja F) joita permutoida. Lisäksi täytyy taas muistaa kertoa mahdollisilla palikoiden sisäisillä järjestyksillä.
2*2*4! = 96
f) Kirjain E ei ole
viimeisenä.
Vähennetään tapaukset, joissa E on viimeinen (5!, viisi ekaa missä vaan järjestyksessä). Siis
6! - 5! = 600 - Avuton1234
Suurkiitokset teille molemmille!!
- Anonyymi
Tämä oli huippuhyödyllinen! Kiitos!
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Porvarimediat paniikissa demareiden huiman kannatuksen vuoksi
Piti sitten keksiä "nimettömiin lähteisiin" perustuen taas joku satu. Ovat kyllä noloja, ja unohtivat sen, että vaalit986348KATASTROFI - Tytti Tuppurainen itse yksi pahimmista kiusaajista!!!
STT:n lähteiden mukaan SDP:n eduskuntaryhmän puheenjohtaja Tytti Tuppurainen on käyttäytynyt toistuvasti epäasiallisesti3555865Mikä siinä on ettei persuille leikkaukset käy?
On esitetty leikkauksia mm. haitallisiin maataloustukiin, kuin myös muihin yritystukiin. Säästöjä saataisiin lisäksi lei602833Lääppijä Lindtman jäi kiinni itse teosta
Lindtman kyselemättä ja epäasiallisesti koskettelee viestintäpäällikköä. https://www.is.fi/politiikka/art-20000117808521072268Juuri nyt! Tytti Tuppurainen on käyttäytynyt toistuvasti epäasiallisesti
Ai että mä nautin, Tytti erot vireille! "Käytös on kohdistunut avustajia ja toisia kansanedustajia kohtaan, uutisoi STT1071958- 1251754
Puolen vuoden koeaika
Voisi toimia meillä. Ensin pitäis selvittää "vaatimukset" puolin ja toisin, ennen kuin mitään aloittaa. Ja matalalla pro191633Tytti Tuppurainen nöyryyttää avustajiaan
Tytti Tuppurainen nöyryyttää SDP:n eduskuntaryhmän kokouksissa sekä avustajia että kansanedustajia. Hän nolaa ihmisiä ju1811300- 731197
Huomaatteko Demari Tytti ei esitä pahoitteluitaan
Samanlainen ilmeisesti kuin Marin eli Uhriutuu no he ovat Demareita ja muiden yläpuolella siis omasta mielestään331108