Jonon muodostaminen, todennäköisyyslaskenta

Avuton1234

Käytössä on kirjaimet A, B, C, D, E ja F. Kuinka monta erilaista ’sanaa’ (lineaarista järjestystä) niistä voidaan muodostaa siten, että

a) Kirjaimet A ja B ovat vierekkäin.

b) A on ennen kirjainta B.

c) A on ennen kirjainta B ja B on ennen kirjainta C.

d) A on ennen kirjainta B ja C on ennen kirjainta D.

e) Kirjaimet A ja B ovat vierekkäin ja kirjaimet C ja D ovat myös vierkkäin.

f) Kirjain E ei ole
viimeisenä.

Miten ratkaisisitte kyseisen tehtävän kohdat?

7

482

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • epäselvätehtävä

      Tuossa pitäisi varmaan tietää sanan maksimipituus. Muutenhan a)-kohtaan vastaus on ääretön, koska sanat voivat olla AB, ABA, ABAA, ABAAA jne. Vai oletetaanko, että sanan maksipituus on kuusi vai että sanan pituus on tasan kuusi?

      • Avuton1234

        Mä ymmärsin tehtävänannon siten että pituus on tasan kuusi mutta nyt kun tarkemmin lukee kommenttisi jälkeen niin voihan sen noinkin tottakai ajatella :D


    • Ohman

      Enpä tiedä minäkään mitä tehtävässä tarkoitetaan mutta jos oletan, että nuo jonot ovat jonon ABCDEF kaikki permutaatiot,joita on 6! kappaletta, niin ratkaisut ovat:

      a) 2* 5*4! Osajonot AB ja BA voivat olla viidessä eri paikassa, loput 4 voivat olla missä järjestyksessä hyvänsä.

      b) 5*4! 4*4! 3*4! 2*4! 1*4! = 15*4! A voi olla 1.,2.,3.,4. tai 5. jolloin B:llä on 5 ... 1 mahdollista paikkaa ja loput 4 voivat olla missä järjestyksessä tahansa.

      c) , d) ja e) samaan tapaan. En nyt viitsi laskea, systeemin kai jo ymmärrät.
      f) 6! - 5! = 5*5!

      Ohman

      • Ohman

        b-kohdan voi päätellä myös näin: jonoja on kaikkiaan 6! kappaletta ja puolet niistä ovat sellaisia joissa A on ennen B:tä eli näitä on 6!/2 = 3*5! = 15*4!

        f-kohdan laskin siis kahdella eri tavalla jotka antavat saman tuloksen.Kasikkien jonojen määrästä vähennettiin ne joissa E on viimeisenä tai sitten laskettiin niin, että E voi olla viidessä paikassa ja loput 5 voivat olla 5! tavalla. Ja tietenkin ihan aritmeettisesti tuo yhtälö pitää paikkansa


    • Kanootti3

      Tässä omat pähkäilyt, joissa myös c- ja d-kohta ratkaistu:

      Ilmeisesti tarkoitetaan kirjainten permutaatioita (järjestyksiä).

      a) Kirjaimet A ja B ovat vierekkäin.
      Ajattele että yhdistät A:n ja B:n yhdeksi "möykyksi" ja sitten tutkit järjestyksiä viidelle jutulle. Kerrotaan kahdella, koska "möykky" voi olla AB tai BA
      Siis 5!*2 = 240 kpl

      b) A on ennen kirjainta B.
      Tämä on selvästi kaikki permutaatiot jaettuna kahdella, sillä joko A on ennen B:tä tai B ennen A:ta ja nämä tapaukset ovat symmetriset (vaihda A ja B; tämä operaatio on bijektiivinen ja muuttaa permutaation, jossa A on ennen B:tä sellaiseksi, jossa B on ennen A:ta ja kääntäen).
      Siis 6!/2 = 360

      c) A on ennen kirjainta B ja B on ennen kirjainta C.
      A:n, B:n ja C:n keskinen permutaatio voi olla 3! -lainen. Näistä vain "ABC" kelpuutetaan ja siihen liittyy siis 6!/3! = 120 kokonaista kuuden kirjaimen permutaatiota (sillä jokaiseen A, B, C: n permutaatioon liittyy yhtä monta kaikkien kirjaimien permutaatiota). Sama idea oli oikeastaan b-kohdassa.

      d) A on ennen kirjainta B ja C on ennen kirjainta D.
      Tämän voisi tehdä vaikka todennäköisyyslaskennan avulla. Otetaan kuuden kirjaimen permutaatioille tasajakauma. Nuo tapaukset "A ennen B:tä" ja "C ennen D:tä" ovat toisistaan riippumattomat. Joten niiden leikkauksen todennäköisyys on todennäköisyyksien tulo ja toisaalta se on suotuisien tapauksien määrä jaettuna kaikkien permutaatioiden määrällä, siis jos merkataan suotuisien tapauksien määrää x:llä (tämä on kysytty lukumäärä), niin
      (6!/2 / 6!) * (6!/2 / 6!) = x / 6!
      x = 6! / 4 = 180


      e) Kirjaimet A ja B ovat vierekkäin ja kirjaimet C ja D ovat myös vierekkäin.
      Yhdistetään taas palikaksi, nyt tulee neljä juttua ({A, B}, {C, D}, E ja F) joita permutoida. Lisäksi täytyy taas muistaa kertoa mahdollisilla palikoiden sisäisillä järjestyksillä.
      2*2*4! = 96

      f) Kirjain E ei ole
      viimeisenä.
      Vähennetään tapaukset, joissa E on viimeinen (5!, viisi ekaa missä vaan järjestyksessä). Siis
      6! - 5! = 600

    • Avuton1234

      Suurkiitokset teille molemmille!!

    • Anonyymi

      Tämä oli huippuhyödyllinen! Kiitos!

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Porvarimediat paniikissa demareiden huiman kannatuksen vuoksi

      Piti sitten keksiä "nimettömiin lähteisiin" perustuen taas joku satu. Ovat kyllä noloja, ja unohtivat sen, että vaalit
      Maailman menoa
      98
      6348
    2. KATASTROFI - Tytti Tuppurainen itse yksi pahimmista kiusaajista!!!

      STT:n lähteiden mukaan SDP:n eduskuntaryhmän puheenjohtaja Tytti Tuppurainen on käyttäytynyt toistuvasti epäasiallisesti
      Maailman menoa
      355
      5865
    3. Mikä siinä on ettei persuille leikkaukset käy?

      On esitetty leikkauksia mm. haitallisiin maataloustukiin, kuin myös muihin yritystukiin. Säästöjä saataisiin lisäksi lei
      Maailman menoa
      60
      2833
    4. Lääppijä Lindtman jäi kiinni itse teosta

      Lindtman kyselemättä ja epäasiallisesti koskettelee viestintäpäällikköä. https://www.is.fi/politiikka/art-2000011780852
      Maailman menoa
      107
      2268
    5. Juuri nyt! Tytti Tuppurainen on käyttäytynyt toistuvasti epäasiallisesti

      Ai että mä nautin, Tytti erot vireille! "Käytös on kohdistunut avustajia ja toisia kansanedustajia kohtaan, uutisoi STT
      Maailman menoa
      107
      1958
    6. Onko kaivattusi

      liian vetovoimainen seksuaalisesti?
      Ikävä
      125
      1754
    7. Puolen vuoden koeaika

      Voisi toimia meillä. Ensin pitäis selvittää "vaatimukset" puolin ja toisin, ennen kuin mitään aloittaa. Ja matalalla pro
      Ikävä
      19
      1633
    8. Tytti Tuppurainen nöyryyttää avustajiaan

      Tytti Tuppurainen nöyryyttää SDP:n eduskuntaryhmän kokouksissa sekä avustajia että kansanedustajia. Hän nolaa ihmisiä ju
      Kotimaiset julkkisjuorut
      181
      1300
    9. On todella hassua

      Ajatella että pitäisit erityisen kuumana tai seksikkäänä?
      Ikävä
      73
      1197
    10. Huomaatteko Demari Tytti ei esitä pahoitteluitaan

      Samanlainen ilmeisesti kuin Marin eli Uhriutuu no he ovat Demareita ja muiden yläpuolella siis omasta mielestään
      Maailman menoa
      33
      1108
    Aihe