Kombinatoriikan tehtävä

Kombinatoriikka

Veikkauksen jokaisessa sarakkeessa on 13 kohdetta. Kussakin näistä on 3 vaihtoehtoa, joista valitaan yksi. Kuinka monella tavalla voidaan täyttää sarake, jossa on täsmälleen 10 oikein?

6

311

Äänestä

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Robotski

      Joskus lapsena aloittelin veikkausta kirjoittamalla vakiorivin, jossa kaikki valinnat olivat ykkösiä. Sillä tuli kymmenen oikein.

    • matikanyritteliäs

      On olemassa (13 yli 10) tapaa valita oikeiden vaihtoehtojen paikat. Jäljelle jää kolme kohdetta, joista kussakin on 2 väärää vaihtoehtoa. Siis (13 yli 10)*2^3=2288.

    • LIsääKommentti

      Yksi veikkauksen rivi voidaan täyttää vakioveikkauksessa 3^13 = 1 594 323 tavalla. Miten tuosta saadaan 2288? Voisiko joku selittää??

    • Anonyymi

      Montako eri riviä tulee vakio 1 kun 1on 6kpl. Xon 4kpl ja 2.on 3kpl. Kiitos saisko tähän vastausta!?

      • Anonyymi

        Se on multinomikerroin 13 yllä (tai alla kummin sitten luetaankaan) 6, 4, 3. Lasketaan 13! / (6!*4!*3!) = 60060. Tuohan tulee siitä, että rivin voi ajatella muodostuvan laittamalla kohteet pöydälle johonkin järjestykseen. Tämä järjestys määrää sen että 6 ensimmäistä laitetaan 1:siks, 4 seuraavaa rasteiks ja vikat kolme 2:siks. Mutta tässä tulee jokainen rivi lasketuksi 6!*4!*3! kertaa, sillä kuutta ekaa keskenään, neljää keskimmäistä keskenään ja kolmea vikaa keskenään permutoimalla rivi ei muutu. Kolmentoista permutaatioilta riveille kuvaus on siis yksi (6!*4!*3! ):een kuvaus.
        Tai toisella tavalla: Ajattele, että sinulla on pöydällä 13 palloa, joista 6:ssa on numero 1, 4:ssä x ja 3:ssa kakkonen. Mahdolliset rivit ovat kaikki mahdolliset näiden järjestykset. Tässä samanmerkkiset pallot ovat samanlaisia eli kaksi järjestystä ovat yhtäsuuret, jos niissä lukevat rivit ovat yhtäsuuret. Nämä järjestykset sitten taas lasketaan niin, että otetaan kaikki 13 objektin järjestykset mutta jaetaan samojen objektien sisäisten järjestysten määrällä.


    • Anonyymi

      Binomikerroin B(n,m) = n! / (m! (n-m)!) kertoo kuinka monella tavalla n:n alkion joukosta voidaan valita m alkiota.
      1. Kysytty tn = B(13,10)*(1/3)^10 * (2/3)^3 = 2288/1594323 = ~ 0,001435.
      2. Kysytty tn =( B(13,10)*2^3) / 3^13 = 2288/1594323.
      Tässä 2-kohdassa on siis "suotuisten tapausten" lukumäärä jaettu kaikkien mahdollisten tapausten lukumäärällä.

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Poliisi: Kymmenhenkinen pohjalaisperhe ollut vuoden kateissa kansainvälinen etsintäkuulutus Poliis

      Poliisi: Kymmenhenkinen pohjalaisperhe ollut vuoden kateissa – kansainvälinen etsintäkuulutus Poliisi pyytää yleisön apu
      Maailman menoa
      272
      2400
    2. Tässä totuus jälleensyntymisestä - voit yllättyä

      Jumalasta syntyminen Raamatussa ei tässä Joh. 3:3. ole alkukielen mukaan ollenkaan sanaa uudestisyntyminen, vaan pelkä
      Jälleensyntyminen
      299
      1289
    3. Mitään järkeä?

      Että ollaan erillään? Kummankin pää on kovilla.
      Ikävä
      108
      1201
    4. En kadu sitä, että kohtasin hänet

      mutta kadun sitä, että aloin kirjoittamaan tänne palstalle. Jollain tasolla se saa vain asiat enemmän solmuun ja tekee n
      Ikävä
      83
      1201
    5. Oisko mitenkään mahdollisesti ihan pikkuisen ikävä..

      ...edes ihan pikkuisen pikkuisen ikävä sulla mua??.. Että miettisit vaikka vähän missähän se nyt on ja oiskohan hauska n
      Ikävä
      58
      1145
    6. Noniin rakas

      Annetaanko pikkuhiljaa jo olla, niin ehkä säilyy vienot hymyt kohdatessa. En edelleenkään halua sulle tai kenellekään mi
      Ikävä
      81
      1096
    7. Lapuan sanomissa käy rytinä

      Pistivät sitten päätoimittajan pihalle
      Lapua
      44
      962
    8. Helena Koivu : Ja kohta mennään taas

      Kohta kohtalon päivä lähestyy kuinka käy Helena Koivulle ? Kenen puolella olet? Jos vastauksesi on Helenan niin voisi
      Kotimaiset julkkisjuorut
      67
      897
    9. Au pair -työ Thaimaassa herättää kiivasta keskustelua somessa: "4cm torakoita, huumeita, tauteja..."

      Au pairit -sarjan uusi kausi herättää keskustelua Suomi24 Keskustelupalvelussa. Mielipiteitä ladataan puolesta ja vastaa
      Tv-sarjat
      22
      860
    10. Oot ihana

      Toivottavasti nähdään sattumalta jonain kesäpäivänä♥️🥺🫂
      Ikävä
      33
      767
    Aihe