Kombinatoriikan tehtävä

Kombinatoriikka

Veikkauksen jokaisessa sarakkeessa on 13 kohdetta. Kussakin näistä on 3 vaihtoehtoa, joista valitaan yksi. Kuinka monella tavalla voidaan täyttää sarake, jossa on täsmälleen 10 oikein?

6

275

Äänestä

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Robotski

      Joskus lapsena aloittelin veikkausta kirjoittamalla vakiorivin, jossa kaikki valinnat olivat ykkösiä. Sillä tuli kymmenen oikein.

    • matikanyritteliäs

      On olemassa (13 yli 10) tapaa valita oikeiden vaihtoehtojen paikat. Jäljelle jää kolme kohdetta, joista kussakin on 2 väärää vaihtoehtoa. Siis (13 yli 10)*2^3=2288.

    • LIsääKommentti

      Yksi veikkauksen rivi voidaan täyttää vakioveikkauksessa 3^13 = 1 594 323 tavalla. Miten tuosta saadaan 2288? Voisiko joku selittää??

    • Anonyymi

      Montako eri riviä tulee vakio 1 kun 1on 6kpl. Xon 4kpl ja 2.on 3kpl. Kiitos saisko tähän vastausta!?

      • Anonyymi

        Se on multinomikerroin 13 yllä (tai alla kummin sitten luetaankaan) 6, 4, 3. Lasketaan 13! / (6!*4!*3!) = 60060. Tuohan tulee siitä, että rivin voi ajatella muodostuvan laittamalla kohteet pöydälle johonkin järjestykseen. Tämä järjestys määrää sen että 6 ensimmäistä laitetaan 1:siks, 4 seuraavaa rasteiks ja vikat kolme 2:siks. Mutta tässä tulee jokainen rivi lasketuksi 6!*4!*3! kertaa, sillä kuutta ekaa keskenään, neljää keskimmäistä keskenään ja kolmea vikaa keskenään permutoimalla rivi ei muutu. Kolmentoista permutaatioilta riveille kuvaus on siis yksi (6!*4!*3! ):een kuvaus.
        Tai toisella tavalla: Ajattele, että sinulla on pöydällä 13 palloa, joista 6:ssa on numero 1, 4:ssä x ja 3:ssa kakkonen. Mahdolliset rivit ovat kaikki mahdolliset näiden järjestykset. Tässä samanmerkkiset pallot ovat samanlaisia eli kaksi järjestystä ovat yhtäsuuret, jos niissä lukevat rivit ovat yhtäsuuret. Nämä järjestykset sitten taas lasketaan niin, että otetaan kaikki 13 objektin järjestykset mutta jaetaan samojen objektien sisäisten järjestysten määrällä.


    • Anonyymi

      Binomikerroin B(n,m) = n! / (m! (n-m)!) kertoo kuinka monella tavalla n:n alkion joukosta voidaan valita m alkiota.
      1. Kysytty tn = B(13,10)*(1/3)^10 * (2/3)^3 = 2288/1594323 = ~ 0,001435.
      2. Kysytty tn =( B(13,10)*2^3) / 3^13 = 2288/1594323.
      Tässä 2-kohdassa on siis "suotuisten tapausten" lukumäärä jaettu kaikkien mahdollisten tapausten lukumäärällä.

    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Janne Ahonen E R O A A

      Taas 2 lasta jää vaille ehjää perhettä!
      Kotimaiset julkkisjuorut
      172
      3570
    2. Tekisi niin mieli laittaa sulle viestiä

      En vaan ole varma ollaanko siihen vielä valmiita, vaikka halua löytyykin täältä suunnalta, ja ikävää, ja kaikkea muuta m
      Ikävä
      85
      1598
    3. Miksi ihmeessä?

      Erika Vikman diskattiin, ei osallistu Euroviisuihin – tilalle Gettomasa ja paluun tekevä Cheek
      Ateismi
      26
      1317
    4. Ootko huomannut miten

      pursuat joka puolelta. Sille joka luulee itsestään liikoja 🫵🙋🏻‍♂️
      Ikävä
      158
      1242
    5. Pitääkö penkeillä hypätä Martina?

      Eivätkö puistonpenkit ole istumista varten.Ei niitä kannata liata hyppäämällä koskaa likaantuvat eikä siellä kukaan niit
      Kotimaiset julkkisjuorut
      194
      1013
    6. Erika Vikman diskattiin, tilalle Gettomasa ja paluun tekevä Cheek

      Erika Vikman diskattiin, ei osallistu Euroviisuihin – tilalle Gettomasa ja paluun tekevä Cheek https://www.rumba.fi/uut
      Maailman menoa
      16
      983
    7. Kerropa ESA miten kävi tuomioiden

      Osaako ESA kertoa miten haukkumasi kunnanhallituksen kävi.
      Puolanka
      35
      981
    8. Kuinka kauan

      Olet ollut kaivattuusi ihastunut/rakastunut? Tajusitko tunteesi heti, vai syventyivätkö ne hitaasti?
      Ikävä
      63
      879
    9. Maikkarin tentti: Orpo jälleen rauhallinen ja erittäin hyvä, myös Purra oli hyvä

      Lindtman ja Kaikkonen oli kohtalaisia, sen sijaan punavihreät Koskela ja Virta olivat taas heikkoja. Ja vastustavat jalk
      Maailman menoa
      95
      829
    10. Se olisi ihan

      Napinpainalluksen päässä. Ei vaatisi paljon
      Ikävä
      62
      765
    Aihe