miten tehtävää 9 pitäisi muka ratkaista
http://matemaattinenyhdistys.fi/yo/?download=k75p.pdf
derivaatan määritelmälle on monta kaavaa mikä niistä pitäisi käyttää... kokeillu ja kokeillu muttei nyt ihan aue....
derivaatan määritelmä
11
<50
Vastaukset
- Anonyymi
f'(0) = lim (h -> 0) (f (0 h) - f(0)) /h
f(x) = 1 2x x^2 f(x^2)
f(0 h) - f(0) = 1 2h h^2 f(h^2) - 1 = 2h h^2 f(h^2). Tämä jaettuna h:lla on 2 h f(h^2).
Koska lim(x->0) f(x) = 1 on lim (h -> 0) f(h^2) = 1 joten f'(0) = lim(h -> 0) 2 h f(h^2) = 2. - Anonyymi
Kiitos paljon heiiii kirjoitan ton paperille niin on helpompi tajuta, mutta luulen että tulen ymmärtämään. Kiitos sulle. onko sulle vinkkejä miten näitä derivaattatehtäviä pitäisi tehdä... just näitä derivaatan määritelmiin perustuvia, koska kaavoja on enemmän kuin 2 niin joskus ei tiedä mitä pitäisu käyttää ja noissa tehtävissä menee aina aivot ihan solmuun, että mitä häh mitä tapahtuu...
- Anonyymi
Ei derivaatan määritelmiä ole kuin yksi ja se on
f'(x) = lim(h -> 0) (f(x h) - f(x)) / h - Anonyymi
voiko tuolla kaavalla laskea http://matemaattinenyhdistys.fi/yo/?download=k91p.pdf tehtävä 9 ????
- Anonyymi
http://matemaattinenyhdistys.fi/yo/?download=s83p.pdf tehtävä on samantyyppinen en ymmärrä miten tuota derivaatan kaavaa voi soveltaa tuohon....
- Anonyymi
Eikö nuo yo-tehtävien ratkaisut löydu netistä?
- Anonyymi
eivät löydy tai en ainakaan löytänyt ja omat aivot eivät riitä noihi....
Anonyymi kirjoitti:
http://matemaattinenyhdistys.fi/yo/?download=s83p.pdf tehtävä on samantyyppinen en ymmärrä miten tuota derivaatan kaavaa voi soveltaa tuohon....
Käytä yhdistetyn funktion jatkuvuutta: x^2 on jatkuva ja kun ajattelet erotusosamäärän funktioksi ja määrittelet sen arvon, niin että se on jatkuva 0:ssa eli siksi derivaatan arvoksi, (joka on kerrottu että se on olemassa)).
Siis lim_{y->0} g(y) = lim_{x->0} g(h(x)),
nollassa jatkuville g ja h, kun h(0) = 0.
Eli toisin sanottuna, voit lätkäistä h(x):n paikalle x:n ja liimes on sama.
Itse tuohon tehtävään, älä vielä lue, mieti ensin itse!!!:
.
.
.
Jaa lauseke kahteen osaan lisäämällä ja vähentämällä osoittajaan f(0) ja ota nyt sellaiset erotusosamäärän näköiset jutut siitä. Huomaatko mikä tässä olisi funktioksi h? Eri osissa hieman erilaiset (muista jälkimmäisessä, että sinun pitää saada tismalleen h myös nimittäjään "x:n paikalle".- Anonyymi
en ymmörrö....
Anonyymi kirjoitti:
en ymmörrö....
Okei, siinä on
(f(x^2) - f(-x^2)) / x^2
ja sen raja-arvoa, kun x->0, kysytään.
Muokataan näin (lisätään 0 = f(0)-f(0) osoittajaan):
(f(x^2) - f(-x^2)) / x^2
= (f(x^2) -f(0) - ( f(-x^2)-f(0)) / x^2
= (f(x^2) -f(0))/x^2 - ( f(-x^2)-f(0)) / x^2
= (f(x^2) -f(0))/x^2 ( f(-x^2)-f(0)) / (-x^2)
Katsotaan nyt esim tuota (f(x^2) -f(0))/x^2 : ää, sehän on ihan samanlainen, kuin derivaatan määritelmässä oleva erotusosamäärä ( (f(x)-f(0))/x ) , mutta x:n paikalla on x^2. Hmmm..., mutta x^2:nhan tekee ihan saman jutun kuin x, kun x->0, eli menee itsekin nollaan. Koska meille on kerrottu, että erotusosamäärällä on nollassa raja-arvo (eli derivaatta olemassa), tiedämme, että tämä raja-arvo on sama lähestyttiin me sitä origoa millä tavalla tahansa.
Toinen pala ( f(-x^2)-f(0)) / (-x^2) on ihan samanlainen, siinä vain on -x^2 nyt tuossa nollaan menevän funktion paikalla.
Eli vastaus on 2*f'(0).- Anonyymi
Anonyymi kirjoitti:
http://matemaattinenyhdistys.fi/yo/?download=s83p.pdf tehtävä on samantyyppinen en ymmärrä miten tuota derivaatan kaavaa voi soveltaa tuohon....
Tarkoititko kukaties tehtävää 7?
f'(0) = lim (h -> 0) (f(0 h) - f(0)) / h. Derivaatan määritelmässä tuon raja-arvon pitää toteutua, menipä h sitten nollaan positiiviselta puolelta nollaa (h >= 0) tai negatiiviseltä puolelta nollaa (h <= 0) jos derivaatta kerran on olemassa . Ja se raja-arvo kummassakin tapauksessa on f'(0).
Nyt on f(x) = f (-x).
Olkoon h >= 0. f'(0) = lim(h-> 0 ) (f(h) - f(0) / h = lim( h -> 0) (f( -h) - f(0)) / (- h) =
lim(h -> 0) (f(h) - f(0)) /( -h) = - lim(h->0) (f(h) - f(0)) / h joten f'(0) = 0. ( 0 on ainut luku jolle päteee - 0 = 0).
Ketjusta on poistettu 0 sääntöjenvastaista viestiä.
Luetuimmat keskustelut
Järkyttävä tieto Purrasta
Purra tapasi nykyisen miehensä täällä. Suomi24:ssä! Tulipa likainen olo. Nyt loppuu tämä roikkuminen tällä palstalla.2325059Näin asia on
Tiedän ettei hän koskaan aio lähestyä minua eikä niin ole koskaan aikonutkaan, eikä lähesty ja enkä minä enää tee sitä k233660Taas varoitusta lumesta ja jäästä
Ai kauhea! Vakava säävaroitus Lumi-/jäävaroitus Varsinais-Suomi, Satakunta, Uusimaa, Kanta-Häme, Päijät-Häme, Pirkanmaa,182114Mikseivät toimittajat vaadi Orpoa vastuuseen lupauksistaan
Missä ne 100.000 uutta työpaikkaa muka ovat? Eivät yhtään missään. Näin sitä Suomessa voi puhua ja luvata mitä sattuu. E2782107Aavistan tai oikeastaan
tiedän, että olet hulluna minuun. Mutta ilman kommunikointia, tällaisenaan tilanne ja kaikki draama ovat mun näkökulmast411309Mistä erotat onko joku kiinnostunut vai muuten mukava?
Voi sekaantua yleiseen ystävällisyyteen vai voiko?1611239Poliisi tahtoo pääsyn 4 miljoonan suomalaisen sormenjälkiin.
https://www.is.fi/digitoday/art-2000011009633.html Tämä sormenjälkiin poliisin pääsy on erittäin tärkeä rikollisten kiin1261099- 33868
Örebro kuolleet lisääntyy.
Nyt n, 10. Mitähän vielä. Haavoittuneet?. Kuka on ampuja, salaisuus.109859- 61777