derivaatan määritelmä

Anonyymi

11

52

    Vastaukset

    Anonyymi (Kirjaudu / Rekisteröidy)
    5000
    • Anonyymi

      f'(0) = lim (h -> 0) (f (0 h) - f(0)) /h
      f(x) = 1 2x x^2 f(x^2)
      f(0 h) - f(0) = 1 2h h^2 f(h^2) - 1 = 2h h^2 f(h^2). Tämä jaettuna h:lla on 2 h f(h^2).
      Koska lim(x->0) f(x) = 1 on lim (h -> 0) f(h^2) = 1 joten f'(0) = lim(h -> 0) 2 h f(h^2) = 2.

    • Anonyymi

      Kiitos paljon heiiii kirjoitan ton paperille niin on helpompi tajuta, mutta luulen että tulen ymmärtämään. Kiitos sulle. onko sulle vinkkejä miten näitä derivaattatehtäviä pitäisi tehdä... just näitä derivaatan määritelmiin perustuvia, koska kaavoja on enemmän kuin 2 niin joskus ei tiedä mitä pitäisu käyttää ja noissa tehtävissä menee aina aivot ihan solmuun, että mitä häh mitä tapahtuu...

      • Anonyymi

        Ei derivaatan määritelmiä ole kuin yksi ja se on
        f'(x) = lim(h -> 0) (f(x h) - f(x)) / h


      • Anonyymi

      • Anonyymi

      • Anonyymi

        Eikö nuo yo-tehtävien ratkaisut löydu netistä?


      • Anonyymi

        eivät löydy tai en ainakaan löytänyt ja omat aivot eivät riitä noihi....


      • Anonyymi kirjoitti:

        http://matemaattinenyhdistys.fi/yo/?download=s83p.pdf tehtävä on samantyyppinen en ymmärrä miten tuota derivaatan kaavaa voi soveltaa tuohon....

        Käytä yhdistetyn funktion jatkuvuutta: x^2 on jatkuva ja kun ajattelet erotusosamäärän funktioksi ja määrittelet sen arvon, niin että se on jatkuva 0:ssa eli siksi derivaatan arvoksi, (joka on kerrottu että se on olemassa)).

        Siis lim_{y->0} g(y) = lim_{x->0} g(h(x)),
        nollassa jatkuville g ja h, kun h(0) = 0.

        Eli toisin sanottuna, voit lätkäistä h(x):n paikalle x:n ja liimes on sama.

        Itse tuohon tehtävään, älä vielä lue, mieti ensin itse!!!:
        .
        .
        .
        Jaa lauseke kahteen osaan lisäämällä ja vähentämällä osoittajaan f(0) ja ota nyt sellaiset erotusosamäärän näköiset jutut siitä. Huomaatko mikä tässä olisi funktioksi h? Eri osissa hieman erilaiset (muista jälkimmäisessä, että sinun pitää saada tismalleen h myös nimittäjään "x:n paikalle".


      • Anonyymi

        en ymmörrö....


      • Anonyymi kirjoitti:

        en ymmörrö....

        Okei, siinä on

        (f(x^2) - f(-x^2)) / x^2

        ja sen raja-arvoa, kun x->0, kysytään.
        Muokataan näin (lisätään 0 = f(0)-f(0) osoittajaan):

        (f(x^2) - f(-x^2)) / x^2
        = (f(x^2) -f(0) - ( f(-x^2)-f(0)) / x^2
        = (f(x^2) -f(0))/x^2 - ( f(-x^2)-f(0)) / x^2
        = (f(x^2) -f(0))/x^2 ( f(-x^2)-f(0)) / (-x^2)

        Katsotaan nyt esim tuota (f(x^2) -f(0))/x^2 : ää, sehän on ihan samanlainen, kuin derivaatan määritelmässä oleva erotusosamäärä ( (f(x)-f(0))/x ) , mutta x:n paikalla on x^2. Hmmm..., mutta x^2:nhan tekee ihan saman jutun kuin x, kun x->0, eli menee itsekin nollaan. Koska meille on kerrottu, että erotusosamäärällä on nollassa raja-arvo (eli derivaatta olemassa), tiedämme, että tämä raja-arvo on sama lähestyttiin me sitä origoa millä tavalla tahansa.

        Toinen pala ( f(-x^2)-f(0)) / (-x^2) on ihan samanlainen, siinä vain on -x^2 nyt tuossa nollaan menevän funktion paikalla.

        Eli vastaus on 2*f'(0).


      • Anonyymi
        Anonyymi kirjoitti:

        http://matemaattinenyhdistys.fi/yo/?download=s83p.pdf tehtävä on samantyyppinen en ymmärrä miten tuota derivaatan kaavaa voi soveltaa tuohon....

        Tarkoititko kukaties tehtävää 7?

        f'(0) = lim (h -> 0) (f(0 h) - f(0)) / h. Derivaatan määritelmässä tuon raja-arvon pitää toteutua, menipä h sitten nollaan positiiviselta puolelta nollaa (h >= 0) tai negatiiviseltä puolelta nollaa (h <= 0) jos derivaatta kerran on olemassa . Ja se raja-arvo kummassakin tapauksessa on f'(0).

        Nyt on f(x) = f (-x).

        Olkoon h >= 0. f'(0) = lim(h-> 0 ) (f(h) - f(0) / h = lim( h -> 0) (f( -h) - f(0)) / (- h) =
        lim(h -> 0) (f(h) - f(0)) /( -h) = - lim(h->0) (f(h) - f(0)) / h joten f'(0) = 0. ( 0 on ainut luku jolle päteee - 0 = 0).


    Ketjusta on poistettu 0 sääntöjenvastaista viestiä.

    Luetuimmat keskustelut

    1. Martinan uusi poikakaveri

      Sielläpä se sitten on. Instastoorissa pienissä speedoissa retkottaa uusin kulta Martinan kanssa. Oikein sydämiä laitettu
      Kotimaiset julkkisjuorut
      128
      986
    2. Rakastan sinua

      Enkä halua enkä aio sinua satuttaa. Satuttaisin samalla itseäni. Olet ihana mies ja olen pahoillani kuinka sinua kohteli
      Ikävä
      37
      897
    3. Kun viimeksi tapasit kaivattusi

      Kasvokkain ( ei netti, varmuudeksi vielä tarkennan), jännittikö? Jos, miten se ilmeni? Huomasitko jännittikö kaivattuasi
      Ikävä
      47
      839
    4. Laita mulle viesti!!

      Laita viesti mesen (Facebook) kautta. Haluan keskustella mutta sinun ehdoilla en halua häiriköidä tms. Yhä välitän sinus
      Ikävä
      50
      741
    5. Suomessa helteet ylittää vasta +30 astetta.

      Etelä-Euroopassa on mitattu yli +40 asteen lämpötiloja. Lähi-Idässä +50 on ylitetty useasti Lämpöennätykset rikkoutuva
      Maailman menoa
      143
      734
    6. Jos lähestyisin

      näyttäisitkö ovea vai vihreää valoa?
      Ikävä
      54
      731
    7. Vanhemmalle naiselle

      alkuperäiseltä kirjoittajalta. On olemassa myös se toinen joka tarkoituksella käyttää samaa otsikkoa. Ihan sama kunhan e
      Ikävä
      32
      723
    8. Ootko sä oikeasti sinkku?

      Kun oot aina yksin tuol kylil, kyl mä susta naisen ottasin jos saisin luvan😳😘🔥
      Ikävä
      42
      676
    9. Leppäskän tarratoimikunta kävi Suviseuroussa haastamassa riitaa!

      Voiko enää törkeämmin häiritä uskovien juhlia? https://www.kirkkojakaupunki.fi/-/tarratoimikunnan-aktivistit-kokivat-sy
      Luterilaisuus
      187
      670
    10. Mitä Raamattu opettaa samaa sukupuolta olevien avioliitosta 4.0

      Edelliset kolme ketjua tuli täyteen joten jatketaan keskustelua. Raamattu opettaa johdonmukaisesti, että homoseksuaali
      Luterilaisuus
      136
      665
    Aihe